Stochastic Integration and Differential Equations: A New Approach

· Stochastic Modelling and Applied Probability Bok 21 · Springer Science & Business Media
E-bok
302
Sider
Vurderinger og anmeldelser blir ikke kontrollert  Finn ut mer

Om denne e-boken

The idea of this book began with an invitation to give a course at the Third Chilean Winter School in Probability and Statistics, at Santiago de Chile, in July, 1984. Faced with the problem of teaching stochastic integration in only a few weeks, I realized that the work of C. Dellacherie [2] provided an outline for just such a pedagogic approach. I developed this into aseries of lectures (Protter [6]), using the work of K. Bichteler [2], E. Lenglart [3] and P. Protter [7], as well as that of Dellacherie. I then taught from these lecture notes, expanding and improving them, in courses at Purdue University, the University of Wisconsin at Madison, and the University of Rouen in France. I take this opportunity to thank these institut ions and Professor Rolando Rebolledo for my initial invitation to Chile. This book assumes the reader has some knowledge of the theory of stochastic processes, including elementary martingale theory. While we have recalled the few necessary martingale theorems in Chap. I, we have not provided proofs, as there are already many excellent treatments of martingale theory readily available (e. g. , Breiman [1], Dellacherie-Meyer [1,2], or Ethier Kurtz [1]). There are several other texts on stochastic integration, all of which adopt to some extent the usual approach and thus require the general theory. The books of Elliott [1], Kopp [1], Metivier [1], Rogers-Williams [1] and to a much lesser extent Letta [1] are examples.

Vurder denne e-boken

Fortell oss hva du mener.

Hvordan lese innhold

Smarttelefoner og nettbrett
Installer Google Play Bøker-appen for Android og iPad/iPhone. Den synkroniseres automatisk med kontoen din og lar deg lese både med og uten nett – uansett hvor du er.
Datamaskiner
Du kan lytte til lydbøker du har kjøpt på Google Play, i nettleseren på datamaskinen din.
Lesebrett og andre enheter
For å lese på lesebrett som Kobo eReader må du laste ned en fil og overføre den til enheten din. Følg den detaljerte veiledningen i brukerstøtten for å overføre filene til støttede lesebrett.