Statistical Modeling and Applications: Multivariate, Heavy-Tailed, Skewed Distributions and Mixture Modeling, Volume 2

┬╖
┬╖ Springer Nature
рдИ-рдкреБрд╕реНрддрдХ
250
рдкреЗрдЬ
рд░реЗрдЯрд┐рдВрдЧ рдЖрдгрд┐ рдкрд░реАрдХреНрд╖рдгреЗ рдпрд╛рдВрдЪреА рдкрдбрддрд╛рд│рдгреА рдХреЗрд▓реЗрд▓реА рдирд╛рд╣реА ┬ардЕрдзрд┐рдХ рдЬрд╛рдгреВрди рдШреНрдпрд╛

рдпрд╛ рдИ-рдкреБрд╕реНрддрдХрд╛рд╡рд┐рд╖рдпреА

In an era defined by the seamless integration of data and sophisticated analytical and modeling techniques, the quest for advanced statistical modeling and methodologies has never been more pertinent. Statistical Modeling and Applications: Multivariate, Heavy-Tailed, Skewed Distributions, Mixture and Neural-Network Modeling, Volume 2, represents a concerted effort to bridge the gap between theoretical advancements and practical applications in the realm of Statistical Science, namely in the area of Statistical Modeling. It also aims to present a wide range of emerging topics in mathematical and statistical modeling written by a group of distinguished researchers from top-tier universities and research institutes to offer broader opportunities in stimulating further collaborations in the areas of mathematics and statistics.

The book has eleven chapters, divided in two Parts, with Part I comprising five chapters dealing with the application of Multivariate Analysis techniques and multivariate distributions to a set of different situations, and Part II consisting of six chapters which address the modeling of several interesting phenomena through the use of Heavy-Tailed, Skewed, Circular-Linear and Mixture Distributions, as well as Neural Networks.

рд▓реЗрдЦрдХрд╛рд╡рд┐рд╖рдпреА

Carlos Coelho is a Professor of Statistics at the Mathematics Department of NOVA School of Science and Technology of NOVA University of Lisbon. His main area of research is Multivariate Analysis, namely the development of likelihood ratio tests for elaborate covariance structures and for MANOVA models, also with elaborate covariance structures, together with the study of the exact distribution and the development of near-exact distributions for the associated test statistics. Related with this area, other areas of interest are Mathematical Statistics and Distribution Theory, as well as Estimation, Univariate and Multivariate Linear, Generalized Linear and Mixed Models. More recently, he also got interested in tests for high-dimensionality and the application of Multivariate Analysis techniques to Statistical Disclosure Control problems. He is Associate Editor of the Springer Book series тАЬEmerging Topics in Statistics and BiostatisticsтАЭ and a member of the International Council of the тАЬBusiness WorldтАЭ Library of the Tsenov Academy of Economics (Svishtov, Bulgaria).

Ding-Geng Chen is a fellow of the American Statistical Association and is currently the executive director and professor in biostatistics at the College of Health Solutions, Arizona State University. He is also an extraordinary professor and the SARChI in biostatistics at the University of Pretoria, an honorary professor at the University of KwaZulu-Natal, South Africa. Dr. Chen was the Karl E. Peace Endowed Eminent Scholar Chair in Biostatistics at Georgia Southern University. He is a senior biostatistics consultant for biopharmaceuticals and government agencies with extensive expertise in biostatistics, clinical trials, and public health statistics. Dr. Chen has more than 200 referred professional publications and co-authored and co-edited 35 books on clinical trial methodology, meta-analysis, data science, causal inference, and public health research.

рдпрд╛ рдИ-рдкреБрд╕реНрддрдХрд▓рд╛ рд░реЗрдЯрд┐рдВрдЧ рджреНрдпрд╛

рддреБрдореНрд╣рд╛рд▓рд╛ рдХрд╛рдп рд╡рд╛рдЯрддреЗ рддреЗ рдЖрдореНрд╣рд╛рд▓рд╛ рд╕рд╛рдВрдЧрд╛.

рд╡рд╛рдЪрди рдорд╛рд╣рд┐рддреА

рд╕реНрдорд╛рд░реНрдЯрдлреЛрди рдЖрдгрд┐ рдЯреЕрдмрд▓реЗрдЯ
Android рдЖрдгрд┐ iPad/iPhone рд╕рд╛рдареА Google Play рдмреБрдХ рдЕтАНреЕрдк рдЗрдВрд╕реНтАНрдЯреЙрд▓ рдХрд░рд╛. рд╣реЗ рддреБрдордЪреНтАНрдпрд╛ рдЦрд╛рддреНтАНрдпрд╛рдиреЗ рдЖрдкреЛрдЖрдк рд╕рд┐рдВрдХ рд╣реЛрддреЗ рдЖрдгрд┐ рддреБрдореНтАНрд╣реА рдЬреЗрдереЗ рдХреБрдареЗ рдЕрд╕рд╛рд▓ рддреЗрдереВрди рддреБрдореНтАНрд╣рд╛рд▓рд╛ рдСрдирд▓рд╛рдЗрди рдХрд┐рдВрд╡рд╛ рдСрдлрд▓рд╛рдЗрди рд╡рд╛рдЪрдгреНтАНрдпрд╛рдЪреА рдЕрдиреБрдорддреА рджреЗрддреЗ.
рд▓реЕрдкрдЯреЙрдк рдЖрдгрд┐ рдХреЙрдВрдкреНрдпреБрдЯрд░
рддреБрдореНрд╣реА рддреБрдордЪреНрдпрд╛ рдХрд╛рдБрдкреНрдпреБрдЯрд░рдЪрд╛ рд╡реЗрдм рдмреНрд░рд╛рдЙрдЭрд░ рд╡рд╛рдкрд░реВрди Google Play рд╡рд░ рдЦрд░реЗрджреА рдХреЗрд▓реЗрд▓реА рдСрдбрд┐рдУрдмреБрдХ рдРрдХреВ рд╢рдХрддрд╛.
рдИрд╡рд╛рдЪрдХ рдЖрдгрд┐ рдЗрддрд░ рдбрд┐рд╡реНрд╣рд╛рдЗрд╕реЗрд╕
Kobo eReaders рд╕рд╛рд░рдЦреНрдпрд╛ рдИ-рдЗрдВрдХ рдбрд┐рд╡реНтАНрд╣рд╛рдЗрд╕рд╡рд░ рд╡рд╛рдЪрдгреНтАНрдпрд╛рд╕рд╛рдареА, рддреБрдореНрд╣реА рдПрдЦрд╛рджреА рдлрд╛рдЗрд▓ рдбрд╛рдЙрдирд▓реЛрдб рдХрд░реВрди рддреА рддреБрдордЪреНтАНрдпрд╛ рдбрд┐рд╡реНтАНрд╣рд╛рдЗрд╕рд╡рд░ рдЯреНрд░рд╛рдиреНрд╕рдлрд░ рдХрд░рдгреЗ рдЖрд╡рд╢реНрдпрдХ рдЖрд╣реЗ. рд╕рдкреЛрд░реНрдЯ рдЕрд╕рд▓реЗрд▓реНрдпрд╛ eReaders рд╡рд░ рдлрд╛рдЗрд▓ рдЯреНрд░рд╛рдиреНрд╕рдлрд░ рдХрд░рдгреНрдпрд╛рд╕рд╛рдареА, рдорджрдд рдХреЗрдВрджреНрд░ рдордзреАрд▓ рддрдкрд╢реАрд▓рд╡рд╛рд░ рд╕реВрдЪрдирд╛ рдлреЙрд▓реЛ рдХрд░рд╛.

Carlos A. Coelho рдХрдбреАрд▓ рдЖрдгрдЦреА

рдпрд╛рдВрд╕рд╛рд░рдЦреА рдИ-рдкреБрд╕реНтАНрддрдХреЗ