Statistical Methods in Epilepsy

· ·
· CRC Press
eBook
418
페이지
적용 가능
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

Epilepsy research promises new treatments and insights into brain function, but statistics and machine learning are paramount for extracting meaning from data and enabling discovery. Statistical Methods in Epilepsy provides a comprehensive introduction to statistical methods used in epilepsy research. Written in a clear, accessible style by leading authorities, this textbook demystifies introductory and advanced statistical methods, providing a practical roadmap that will be invaluable for learners and experts alike.

Topics include a primer on version control and coding, pre-processing of imaging and electrophysiological data, hypothesis testing, generalized linear models, survival analysis, network analysis, time-series analysis, spectral analysis, spatial statistics, unsupervised and supervised learning, natural language processing, prospective trial design, pharmacokinetic and pharmacodynamic modeling, and randomized clinical trials.

Features:

  • Provides a comprehensive introduction to statistical methods employed in epilepsy research
  • Divided into four parts: Basic Processing Methods for Data Analysis; Statistical Models for Epilepsy Data Types; Machine Learning Methods; and Clinical Studies
  • Covers methodological and practical aspects, as well as worked-out examples with R and Python code provided in the online supplement
  • Includes contributions by experts in the field
  • https://github.com/sharon-chiang/Statistics-Epilepsy-Book/

The handbook targets clinicians, graduate students, medical students, and researchers who seek to conduct quantitative epilepsy research. The topics covered extend broadly to quantitative research in other neurological specialties and provide a valuable reference for the field of neurology.

저자 정보

Sharon Chiang is a research fellow in the Department of Physiology and instructor in the Epilepsy Division in the Department of Neurology at the University of California, San Francisco, USA. Her research focuses on development of methods for state-space models in the estimation of seizure risk and neural mechanisms of memory consolidation in epilepsy.

Vikram R. Rao is Associate Professor of Clinical Neurology, Ernest Gallo Distinguished Professor, and Chief of the Epilepsy Division in the Department of Neurology at the University of California, San Francisco, USA. His clinical and research interests involve applications of neurostimulation devices for drug-resistant epilepsy, neuropsychiatric disorders, and seizure forecasting.

Marina Vannucci is Noah Harding Professor of Statistics at Rice University, Houston, TX, USA, and also holds an Adjunct Professor appointment at the MD Anderson Cancer Center, Houston, TX, USA. Her research is focused on the development of Bayesian statistical methodologies for application in genomics, neuroscience and neuroimaging.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.