Statistical Methods in Epilepsy

· ·
· CRC Press
E-könyv
418
Oldalak száma
Használható
Az értékelések és vélemények nincsenek ellenőrizve További információ

Információk az e-könyvről

Epilepsy research promises new treatments and insights into brain function, but statistics and machine learning are paramount for extracting meaning from data and enabling discovery. Statistical Methods in Epilepsy provides a comprehensive introduction to statistical methods used in epilepsy research. Written in a clear, accessible style by leading authorities, this textbook demystifies introductory and advanced statistical methods, providing a practical roadmap that will be invaluable for learners and experts alike.

Topics include a primer on version control and coding, pre-processing of imaging and electrophysiological data, hypothesis testing, generalized linear models, survival analysis, network analysis, time-series analysis, spectral analysis, spatial statistics, unsupervised and supervised learning, natural language processing, prospective trial design, pharmacokinetic and pharmacodynamic modeling, and randomized clinical trials.

Features:

  • Provides a comprehensive introduction to statistical methods employed in epilepsy research
  • Divided into four parts: Basic Processing Methods for Data Analysis; Statistical Models for Epilepsy Data Types; Machine Learning Methods; and Clinical Studies
  • Covers methodological and practical aspects, as well as worked-out examples with R and Python code provided in the online supplement
  • Includes contributions by experts in the field
  • https://github.com/sharon-chiang/Statistics-Epilepsy-Book/

The handbook targets clinicians, graduate students, medical students, and researchers who seek to conduct quantitative epilepsy research. The topics covered extend broadly to quantitative research in other neurological specialties and provide a valuable reference for the field of neurology.

A szerzőről

Sharon Chiang is a research fellow in the Department of Physiology and instructor in the Epilepsy Division in the Department of Neurology at the University of California, San Francisco, USA. Her research focuses on development of methods for state-space models in the estimation of seizure risk and neural mechanisms of memory consolidation in epilepsy.

Vikram R. Rao is Associate Professor of Clinical Neurology, Ernest Gallo Distinguished Professor, and Chief of the Epilepsy Division in the Department of Neurology at the University of California, San Francisco, USA. His clinical and research interests involve applications of neurostimulation devices for drug-resistant epilepsy, neuropsychiatric disorders, and seizure forecasting.

Marina Vannucci is Noah Harding Professor of Statistics at Rice University, Houston, TX, USA, and also holds an Adjunct Professor appointment at the MD Anderson Cancer Center, Houston, TX, USA. Her research is focused on the development of Bayesian statistical methodologies for application in genomics, neuroscience and neuroimaging.

E-könyv értékelése

Mondd el a véleményedet.

Olvasási információk

Okostelefonok és táblagépek
Telepítsd a Google Play Könyvek alkalmazást Android- vagy iPad/iPhone eszközre. Az alkalmazás automatikusan szinkronizálódik a fiókoddal, így bárhol olvashatsz online és offline állapotban is.
Laptopok és számítógépek
A Google Playen vásárolt hangoskönyveidet a számítógép böngészőjében is meghallgathatod.
E-olvasók és más eszközök
E-tinta alapú eszközökön (például Kobo e-könyv-olvasón) való olvasáshoz le kell tölteni egy fájlt, és átvinni azt a készülékre. A Súgó részletes utasításait követve lehet átvinni a fájlokat a támogatott e-könyv-olvasókra.