Statistical Inference and Prediction in Climatology: A Bayesian Approach

· Meteorological Monographs Sách 20 · Springer
Sách điện tử
203
Trang
Điểm xếp hạng và bài đánh giá chưa được xác minh  Tìm hiểu thêm

Giới thiệu về sách điện tử này

The climatologist (like the hydrologist, the economist, the social scientist, and others) is frequently faces with situations in which a prediction must be made of the outcome of a process that is inherently probabilistic, and this inherent uncertainty is compounded by the expert's limited knowledge of the process itself. An example might be predicting next summer's mean temperature at a previously unmonitored location. This monograph deals with the balanced use of expert judgment and limited data in such situations. How does the expert quantify his or her judgment? When data are plentiful they can tell a complete story, but how does one alter prior judgment in the light of a few observations, and integrate that information into a consistent and knowledgeable prediction? Bayes theorem provides a straightforward rule for modifying a previously held belief in the light of new data. Bayesian methods are valuable and practical. This monograph is intended to introduce some concepts of statistical inference and prediction that are not generally treated in the traditional college course in statistics, and have not seen their way into the technical literature generally available to the practising climatologist. Even today, where Bayesian methods are presented the practical aspects of their application are seldom emphasized. Using examples drawn from climatology and meteorology covering probabilistic processes ranging from Bernoulli to normal to autoregression, methods for quantifying beliefs as concise probability statements are described, and the implications of new data on beliefs and of beliefs on predictions are developed.istical inference and prediction that are not generally treated in the traditional college course in statistics, and have not seen their way into the technical literature generally available to the practising climatologist. Even today, where Bayesian methods are presented the practical aspects of their application are seldom emphasized. Using examples drawn from climatology and meteorology covering probabilistic processes ranging from Bernoulli to normal to autoregression, methods for quantifying beliefs as concise probability statements are described, and the implications of new data on beliefs and of beliefs on predictions are developed.

Xếp hạng sách điện tử này

Cho chúng tôi biết suy nghĩ của bạn.

Đọc thông tin

Điện thoại thông minh và máy tính bảng
Cài đặt ứng dụng Google Play Sách cho AndroidiPad/iPhone. Ứng dụng sẽ tự động đồng bộ hóa với tài khoản của bạn và cho phép bạn đọc trực tuyến hoặc ngoại tuyến dù cho bạn ở đâu.
Máy tính xách tay và máy tính
Bạn có thể nghe các sách nói đã mua trên Google Play thông qua trình duyệt web trên máy tính.
Thiết bị đọc sách điện tử và các thiết bị khác
Để đọc trên thiết bị e-ink như máy đọc sách điện tử Kobo, bạn sẽ cần tải tệp xuống và chuyển tệp đó sang thiết bị của mình. Hãy làm theo hướng dẫn chi tiết trong Trung tâm trợ giúp để chuyển tệp sang máy đọc sách điện tử được hỗ trợ.