Statistical Inference Under Mixture Models

· Springer Nature
電子書
327
評分和評論未經驗證  瞭解詳情

關於本電子書

This book puts its weight on theoretical issues related to finite mixture models. It shows that a good applicant, is an applicant who understands the issues behind each statistical method. This book is intended for applicants whose interests include some understanding of the procedures they are using, while they do not have to read the technical derivations.

At the same time, many researchers find most theories and techniques necessary for the development of various statistical methods, without chasing after one set of research papers, after another. Even though the book emphasizes the theory, it provides accessible numerical tools for data analysis. Readers with strength in developing statistical software, may find it useful.


關於作者

Jiahua Chen is a professor at the University of British Columbia. He has broad research interests and published papers in a wide range of research areas and journals. Among numerous awards, he is the recipient of the CRM/SSC award for significant contributions within the first 15 years of obtaining a Ph.D. degree in 2005 and the Gold medal of the Statistical Society of Canada in 2014. He is an elected fellow of both the Institute of Mathematical Statistics and the American Statistical Association. He won the International Chinese Statistical Association distinguished achievement award in 2016. He claims a unique territory in the area of developing inference methods for finite mixture models.

Furthermore, Jiahua Chen served as the Canada Research Chair, Tier I from January 2007 to December 2020, and he is a fellow of the Royal Society of Canada.


為這本電子書評分

歡迎提供意見。

閱讀資訊

智慧型手機與平板電腦
只要安裝 Google Play 圖書應用程式 Android 版iPad/iPhone 版,不僅應用程式內容會自動與你的帳戶保持同步,還能讓你隨時隨地上網或離線閱讀。
筆記型電腦和電腦
你可以使用電腦的網路瀏覽器聆聽你在 Google Play 購買的有聲書。
電子書閱讀器與其他裝置
如要在 Kobo 電子閱讀器這類電子書裝置上閱覽書籍,必須將檔案下載並傳輸到該裝置上。請按照說明中心的詳細操作說明,將檔案傳輸到支援的電子閱讀器上。