Statistical Independence in Probability, Analysis and Number Theory

· Courier Dover Publications
4,0
2 κριτικές
ebook
112
Σελίδες
Οι αξιολογήσεις και οι κριτικές δεν επαληθεύονται  Μάθετε περισσότερα

Σχετικά με το ebook

This concise monograph in probability by Mark Kac, a well-known mathematician, presumes a familiarity with Lebesgue's theory of measure and integration, the elementary theory of Fourier integrals, and the rudiments of number theory. Readers may then follow Dr. Kac's attempt "to rescue statistical independence from the fate of abstract oblivion by showing how in its simplest form it arises in various contexts cutting across different mathematical disciplines."
The treatment begins with an examination of a formula of Vieta that extends to the notion of statistical independence. Subsequent chapters explore laws of large numbers and Émile Borel's concept of normal numbers; the normal law, as expressed by Abraham de Moivre and Andrey Markov's method; and number theoretic functions as well as the normal law in number theory. The final chapter ranges in scope from kinetic theory to continued fractions. All five chapters are enhanced by problems.

Βαθμολογίες και αξιολογήσεις

4,0
2 αξιολογήσεις

Σχετικά με τον συγγραφέα

Mark Kac (1914–1984) was born in Poland and came to the United States in the 1930s. He taught at Cornell and later served on the faculties of Rockefeller University in New York and the University of Southern California. His main focus was probability theory, and Dover also publishes his Mathematics and Logic, co-written with S. M. Ulam.

Αξιολογήστε αυτό το ebook

Πείτε μας τη γνώμη σας.

Πληροφορίες ανάγνωσης

Smartphone και tablet
Εγκαταστήστε την εφαρμογή Βιβλία Google Play για Android και iPad/iPhone. Συγχρονίζεται αυτόματα με τον λογαριασμό σας και σας επιτρέπει να διαβάζετε στο διαδίκτυο ή εκτός σύνδεσης, όπου κι αν βρίσκεστε.
Φορητοί και επιτραπέζιοι υπολογιστές
Μπορείτε να ακούσετε ηχητικά βιβλία τα οποία αγοράσατε στο Google Play, χρησιμοποιώντας το πρόγραμμα περιήγησης στον ιστό του υπολογιστή σας.
eReader και άλλες συσκευές
Για να διαβάσετε περιεχόμενο σε συσκευές e-ink, όπως είναι οι συσκευές Kobo eReader, θα χρειαστεί να κατεβάσετε ένα αρχείο και να το μεταφέρετε στη συσκευή σας. Ακολουθήστε τις αναλυτικές οδηγίες του Κέντρου βοήθειας για να μεταφέρετε αρχεία σε υποστηριζόμενα eReader.