Statistical Independence in Probability, Analysis and Number Theory

· Courier Dover Publications
4,0
2 resensies
E-boek
112
Bladsye
Graderings en resensies word nie geverifieer nie. Kom meer te wete

Meer oor hierdie e-boek

This concise monograph in probability by Mark Kac, a well-known mathematician, presumes a familiarity with Lebesgue's theory of measure and integration, the elementary theory of Fourier integrals, and the rudiments of number theory. Readers may then follow Dr. Kac's attempt "to rescue statistical independence from the fate of abstract oblivion by showing how in its simplest form it arises in various contexts cutting across different mathematical disciplines."
The treatment begins with an examination of a formula of Vieta that extends to the notion of statistical independence. Subsequent chapters explore laws of large numbers and Émile Borel's concept of normal numbers; the normal law, as expressed by Abraham de Moivre and Andrey Markov's method; and number theoretic functions as well as the normal law in number theory. The final chapter ranges in scope from kinetic theory to continued fractions. All five chapters are enhanced by problems.

Graderings en resensies

4,0
2 resensies

Meer oor die skrywer

Mark Kac (1914–1984) was born in Poland and came to the United States in the 1930s. He taught at Cornell and later served on the faculties of Rockefeller University in New York and the University of Southern California. His main focus was probability theory, and Dover also publishes his Mathematics and Logic, co-written with S. M. Ulam.

Gradeer hierdie e-boek

Sê vir ons wat jy dink.

Lees inligting

Slimfone en tablette
Installeer die Google Play Boeke-app vir Android en iPad/iPhone. Dit sinkroniseer outomaties met jou rekening en maak dit vir jou moontlik om aanlyn of vanlyn te lees waar jy ook al is.
Skootrekenaars en rekenaars
Jy kan jou rekenaar se webblaaier gebruik om na oudioboeke wat jy op Google Play gekoop het, te luister.
E-lesers en ander toestelle
Om op e-inktoestelle soos Kobo-e-lesers te lees, moet jy ’n lêer aflaai en dit na jou toestel toe oordra. Volg die gedetailleerde hulpsentrumaanwysings om die lêers na ondersteunde e-lesers toe oor te dra.