Solving Systems of Polynomial Equations

· Conference board of the mathematical sciences: Regional conference series in mathematics 第 97 本图书 · American Mathematical Soc.
电子书
152
评分和评价未经验证  了解详情

关于此电子书

A classic problem in mathematics is solving systems of polynomial equations in several unknowns. Today, polynomial models are ubiquitous and widely used across the sciences. They arise in robotics, coding theory, optimization, mathematical biology, computer vision, game theory, statistics, and numerous other areas. This book furnishes a bridge across mathematical disciplines and exposes many facets of systems of polynomial equations. It covers a wide spectrum of mathematicaltechniques and algorithms, both symbolic and numerical. The set of solutions to a system of polynomial equations is an algebraic variety-the basic object of algebraic geometry. The algorithmic study of algebraic varieties is the central theme of computational algebraic geometry. Exciting recent developmentsin computer software for geometric calculations have revolutionized the field. Formerly inaccessible problems are now tractable, providing fertile ground for experimentation and conjecture. The first half of the book gives a snapshot of the state of the art of the topic. Familiar themes are covered in the first five chapters, including polynomials in one variable, Grobner bases of zero-dimensional ideals, Newton polytopes and Bernstein's Theorem, multidimensional resultants, and primarydecomposition. The second half of the book explores polynomial equations from a variety of novel and unexpected angles. It introduces interdisciplinary connections, discusses highlights of current research, and outlines possible future algorithms. Topics include computation of Nash equilibria in gametheory, semidefinite programming and the real Nullstellensatz, the algebraic geometry of statistical models, the piecewise-linear geometry of valuations and amoebas, and the Ehrenpreis-Palamodov theorem on linear partial differential equations with constant coefficients. Throughout the text, there are many hands-on examples and exercises, including short but complete sessions in MapleR, MATLABR, Macaulay 2, Singular, PHCpack, CoCoA, and SOSTools. These examples will be particularly useful forreaders with no background in algebraic geometry or commutative algebra. Within minutes, readers can learn how to type in polynomial equations and actually see some meaningful results on their computer screens. Prerequisites include basic abstract and computational algebra. The book is designed as atext for a graduate course in computational algebra. R Waterloo Maple, Inc., Ontario, Canada. R MATLAB, The MathWorks, Inc., Natick, MA. Singular is a free software distributed under the GNU license. cDepartment of Mathematics, and Centre for Computer Algebra, University of Kaiserslautern, Germany. Macaulay 2, c Daniel R. Grayson and Michael E. Stillman (1993-2001) and is distributed under the GNU license. PHCpack c1998, Katholieke Universiteit Leuven, Department of Computer Science, Heverlee,Belgium. CoCoA, A. Capani, G. Niesi, L. Robbiano, a system for doing Computations in Commutative Algebra, available via anonymous ftp from: http://cocoa.dima.unige.it. SOSTools is a MATLABR toolbox and freely available under the GNU license at http://www.cds.caltech.edu/sostools orhttp://www.aut.ee.ethz.ch/

为此电子书评分

欢迎向我们提供反馈意见。

如何阅读

智能手机和平板电脑
只要安装 AndroidiPad/iPhone 版的 Google Play 图书应用,不仅应用内容会自动与您的账号同步,还能让您随时随地在线或离线阅览图书。
笔记本电脑和台式机
您可以使用计算机的网络浏览器聆听您在 Google Play 购买的有声读物。
电子阅读器和其他设备
如果要在 Kobo 电子阅读器等电子墨水屏设备上阅读,您需要下载一个文件,并将其传输到相应设备上。若要将文件传输到受支持的电子阅读器上,请按帮助中心内的详细说明操作。