Solving Diophantine Equations

· Infinite Study
3,0
2 resensies
E-boek
254
Bladsye
Geskik
Graderings en resensies word nie geverifieer nie. Kom meer te wete

Meer oor hierdie e-boek

In this book a multitude of Diophantine equations and their partial or complete solutions are presented. How should we solve, for example, the equation η(π(x)) = π(η(x)), where η is the Smarandache function and π is Riemann function of counting the number of primes up to x, in the set of natural numbers?

If an analytical method is not available, an idea would be to recall the empirical search for solutions. We establish a domain of searching for the solutions and then we check all possible situations, and of course we retain among them only those solutions that verify our equation.

In other words, we say that the equation does not have solutions in the search domain, or the equation has n solutions in this domain. This mode of solving is called partial resolution. Partially solving a Diophantine equation may be a good start for a complete solving of the problem.

The authors have identified 62 Diophantine equations that impose such approach and they partially solved them. For an efficient resolution it was necessarily that they have constructed many useful ”tools” for partially solving the Diophantine equations into a reasonable time.

The computer programs as tools were written in Mathcad, because this is a good mathematical software where many mathematical functions are implemented. Transposing the programs into another computer language is facile, and such algorithms can be turned to account on other calculation systems with various processors.

 

Graderings en resensies

3,0
2 resensies

Meer oor die skrywer

 

Gradeer hierdie e-boek

Sê vir ons wat jy dink.

Lees inligting

Slimfone en tablette
Installeer die Google Play Boeke-app vir Android en iPad/iPhone. Dit sinkroniseer outomaties met jou rekening en maak dit vir jou moontlik om aanlyn of vanlyn te lees waar jy ook al is.
Skootrekenaars en rekenaars
Jy kan jou rekenaar se webblaaier gebruik om na oudioboeke wat jy op Google Play gekoop het, te luister.
E-lesers en ander toestelle
Om op e-inktoestelle soos Kobo-e-lesers te lees, moet jy ’n lêer aflaai en dit na jou toestel toe oordra. Volg die gedetailleerde hulpsentrumaanwysings om die lêers na ondersteunde e-lesers toe oor te dra.