Solitons, Instantons, and Twistors

· Oxford Graduate Texts in Mathematics 第 19 本图书 · OUP Oxford
电子书
376
符合条件
评分和评价未经验证  了解详情

关于此电子书

Most nonlinear differential equations arising in natural sciences admit chaotic behaviour and cannot be solved analytically. Integrable systems lie on the other extreme. They possess regular, stable, and well behaved solutions known as solitons and instantons. These solutions play important roles in pure and applied mathematics as well as in theoretical physics where they describe configurations topologically different from vacuum. While integrable equations in lower space-time dimensions can be solved using the inverse scattering transform, the higher-dimensional examples of anti-self-dual Yang-Mills and Einstein equations require twistor theory. Both techniques rely on an ability to represent nonlinear equations as compatibility conditions for overdetermined systems of linear differential equations. The book provides a self-contained and accessible introduction to the subject. It starts with an introduction to integrability of ordinary and partial differential equations. Subsequent chapters explore symmetry analysis, gauge theory, gravitational instantons, twistor transforms, and anti-self-duality equations. The three appendices cover basic differential geometry, complex manifold theory, and the exterior differential system.

作者简介

Maciej Dunajski read physics in Lodz, Poland and received a PhD in mathematics from Oxford University where he held a Senior Scholarship at Merton College. After spending four years as a lecturer in the Mathematical Institute in Oxford where he was a member of Roger Penrose's research group, he moved to Cambridge, where holds a Fellowship and lectureship at Clare College and a Newton Trust Lectureship at the Department of Applied Mathematics and Theoretical Physics. Dunajski specialises in twistor theory and differential geometric approaches to integrability and solitons. He is married with two sons.

为此电子书评分

欢迎向我们提供反馈意见。

如何阅读

智能手机和平板电脑
只要安装 AndroidiPad/iPhone 版的 Google Play 图书应用,不仅应用内容会自动与您的账号同步,还能让您随时随地在线或离线阅览图书。
笔记本电脑和台式机
您可以使用计算机的网络浏览器聆听您在 Google Play 购买的有声读物。
电子阅读器和其他设备
如果要在 Kobo 电子阅读器等电子墨水屏设备上阅读,您需要下载一个文件,并将其传输到相应设备上。若要将文件传输到受支持的电子阅读器上,请按帮助中心内的详细说明操作。