Solitons, Instantons, and Twistors

· Oxford Graduate Texts in Mathematics Livro 19 · OUP Oxford
E-book
376
Páginas
Qualificado
As notas e avaliações não são verificadas Saiba mais

Sobre este e-book

Most nonlinear differential equations arising in natural sciences admit chaotic behaviour and cannot be solved analytically. Integrable systems lie on the other extreme. They possess regular, stable, and well behaved solutions known as solitons and instantons. These solutions play important roles in pure and applied mathematics as well as in theoretical physics where they describe configurations topologically different from vacuum. While integrable equations in lower space-time dimensions can be solved using the inverse scattering transform, the higher-dimensional examples of anti-self-dual Yang-Mills and Einstein equations require twistor theory. Both techniques rely on an ability to represent nonlinear equations as compatibility conditions for overdetermined systems of linear differential equations. The book provides a self-contained and accessible introduction to the subject. It starts with an introduction to integrability of ordinary and partial differential equations. Subsequent chapters explore symmetry analysis, gauge theory, gravitational instantons, twistor transforms, and anti-self-duality equations. The three appendices cover basic differential geometry, complex manifold theory, and the exterior differential system.

Sobre o autor

Maciej Dunajski read physics in Lodz, Poland and received a PhD in mathematics from Oxford University where he held a Senior Scholarship at Merton College. After spending four years as a lecturer in the Mathematical Institute in Oxford where he was a member of Roger Penrose's research group, he moved to Cambridge, where holds a Fellowship and lectureship at Clare College and a Newton Trust Lectureship at the Department of Applied Mathematics and Theoretical Physics. Dunajski specialises in twistor theory and differential geometric approaches to integrability and solitons. He is married with two sons.

Avaliar este e-book

Diga o que você achou

Informações de leitura

Smartphones e tablets
Instale o app Google Play Livros para Android e iPad/iPhone. Ele sincroniza automaticamente com sua conta e permite ler on-line ou off-line, o que você preferir.
Laptops e computadores
Você pode ouvir audiolivros comprados no Google Play usando o navegador da Web do seu computador.
eReaders e outros dispositivos
Para ler em dispositivos de e-ink como os e-readers Kobo, é necessário fazer o download e transferir um arquivo para o aparelho. Siga as instruções detalhadas da Central de Ajuda se quiser transferir arquivos para os e-readers compatíveis.