Singular Intersection Homology

· New Mathematical Monographs Boek 33 · Cambridge University Press
E-boek
824
Bladsye
Graderings en resensies word nie geverifieer nie. Kom meer te wete

Meer oor hierdie e-boek

Intersection homology is a version of homology theory that extends Poincaré duality and its applications to stratified spaces, such as singular varieties. This is the first comprehensive expository book-length introduction to intersection homology from the viewpoint of singular and piecewise-linear chains. Recent breakthroughs have made this approach viable by providing intersection homology and cohomology versions of all the standard tools in the homology tool box, making the subject readily accessible to graduate students and researchers in topology as well as researchers from other fields. This text includes both new research material and new proofs of previously-known results in intersection homology, as well as treatments of many classical topics in algebraic and manifold topology. Written in a detailed but expository style, this book is suitable as an introduction to intersection homology or as a thorough reference.

Meer oor die skrywer

Greg Friedman is Professor of Mathematics at Texas Christian University. Professor Friedman's primary research is in geometric and algebraic topology with particular emphases on stratified spaces and high-dimensional knot theory. He has given introductory lecture series on intersection homology at the University of Lille and the Fields Institute for Research in Mathematical Sciences. He has received grants from the National Science Foundation and the Simons Foundation.

Gradeer hierdie e-boek

Sê vir ons wat jy dink.

Lees inligting

Slimfone en tablette
Installeer die Google Play Boeke-app vir Android en iPad/iPhone. Dit sinkroniseer outomaties met jou rekening en maak dit vir jou moontlik om aanlyn of vanlyn te lees waar jy ook al is.
Skootrekenaars en rekenaars
Jy kan jou rekenaar se webblaaier gebruik om na oudioboeke wat jy op Google Play gekoop het, te luister.
E-lesers en ander toestelle
Om op e-inktoestelle soos Kobo-e-lesers te lees, moet jy ’n lêer aflaai en dit na jou toestel toe oordra. Volg die gedetailleerde hulpsentrumaanwysings om die lêers na ondersteunde e-lesers toe oor te dra.