Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning, Edition 2

· Operations Research/Computer Science Interfaces Series 55-кітап · Springer
4,3
3 пікір
Электрондық кітап
508
бет
Рейтингілер мен пікірлер тексерілмеген. Толығырақ

Осы электрондық кітап туралы ақпарат

Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduce the evolving area of static and dynamic simulation-based optimization. Covered in detail are model-free optimization techniques – especially designed for those discrete-event, stochastic systems which can be simulated but whose analytical models are difficult to find in closed mathematical forms.

Key features of this revised and improved Second Edition include:

· Extensive coverage, via step-by-step recipes, of powerful new algorithms for static simulation optimization, including simultaneous perturbation, backtracking adaptive search and nested partitions, in addition to traditional methods, such as response surfaces, Nelder-Mead search and meta-heuristics (simulated annealing, tabu search, and genetic algorithms)

· Detailed coverage of the Bellman equation framework for Markov Decision Processes (MDPs), along with dynamic programming(value and policy iteration) for discounted, average, and total reward performance metrics

· An in-depth consideration of dynamic simulation optimization via temporal differences and Reinforcement Learning: Q-Learning, SARSA, and R-SMART algorithms, and policy search, via API, Q-P-Learning, actor-critics, and learning automata

· A special examination of neural-network-based function approximation for Reinforcement Learning, semi-Markov decision processes (SMDPs), finite-horizon problems, two time scales, case studies for industrial tasks, computer codes (placed online) and convergence proofs, via Banach fixed point theory and Ordinary Differential Equations

Themed around three areas in separate sets of chapters – Static Simulation Optimization, Reinforcement Learning and Convergence Analysis – this book is written for researchers and students in the fields of engineering (industrial, systems,electrical and computer), operations research, computer science and applied mathematics.

Бағалар мен пікірлер

4,3
3 пікір

Авторы туралы

Abhijit Gosavi is a leading international authority on reinforcement learning, stochastic dynamic programming and simulation-based optimization. The first edition of his Springer book “Simulation-Based Optimization” that appeared in 2003 was the first text to have appeared on that topic. He is regularly an invited speaker at major national and international conferences on operations research, reinforcement learning, adaptive/approximate dynamic programming, and systems engineering.

He has published more than fifty journal and conference articles – many of which have appeared in leading scholarly journals such as Management Science, Automatica, INFORMS Journal on Computing, Machine Learning, Journal of Retailing, Systems and Control Letters and the European Journal of Operational Research. He has also authored numerous book chapters on simulation-based optimization and operations research. His research has been funded by the National Science Foundation, Department of Defense, Missouri Department of Transportation, University of Missouri Research Board and industry. He has consulted extensively for the U.S. Department of Veterans Affairs and the mass media as a statistical/simulation analyst. He has received teaching awards from the Institute of Industrial Engineers.

He currently serves as an Associate Professor of Engineering Management and Systems Engineering at Missouri University of Science and Technology in Rolla, MO. He holds a masters degree in Mechanical Engineering from the Indian Institute of Technology and a Ph.D. in Industrial Engineering from the University of South Florida. He is a member of INFORMS, IIE and ASEE.

Осы электрондық кітапты бағалаңыз.

Пікіріңізбен бөлісіңіз.

Ақпаратты оқу

Смартфондар мен планшеттер
Android және iPad/iPhone үшін Google Play Books қолданбасын орнатыңыз. Ол аккаунтпен автоматты түрде синхрондалады және қайда болсаңыз да, онлайн не офлайн режимде оқуға мүмкіндік береді.
Ноутбуктар мен компьютерлер
Google Play дүкенінде сатып алған аудиокітаптарды компьютердің браузерінде тыңдауыңызға болады.
eReader және басқа құрылғылар
Kobo eReader сияқты E-ink технологиясымен жұмыс істейтін құрылғылардан оқу үшін файлды жүктеп, оны құрылғыға жіберу керек. Қолдау көрсетілетін eReader құрылғысына файл жіберу үшін Анықтама орталығының нұсқауларын орындаңыз.