Together, these technologies benefit from ultra-low latency, faster response times, lower bandwidth costs and resilience from network failure, and the book explains the advantages of systems and applications using intelligent IoT devices that are at the edge of a network and close to users. It explains how to make most of edge and cloud computing as complementary technologies or used in isolation for extensive and widespread applications. The advancement in IoT devices, networking facilities, parallel computation and 5G, and robust infrastructure for generalized machine learning have made it possible to employ edge computational intelligence in diverse areas and in diverse ways.
The book begins with chapters that cover Edge AI services on offer as compared to conventional systems. These are followed by chapters that discuss security and privacy issues encountered during the implementation and execution of edge AI and computing services The book concludes with chapters looking at applications spread across different areas of edge AI and edge computing and also at the role of computational intelligence in AI-driven IoT systems.
Shrikaant Kulkarni has 37 years of teaching and research experience at both undergraduate and postgraduate levels. Presently he is a Professor in the Department of Civil Engineering, Padm. Dr. V. B. Kolte College of Engineering, Malkapur, India. He has published over 60 research papers in national and international journals and conferences
Jaiprakash Narain Dwivedi is currently working as an Associate Professor, ECE Department, University Institute of Engineering, Chandigarh University, Mohali, Punjab, India. His interest in research includes machine learning, artificial neural network, pattern recognition, classification, CNN, DNN, deep learning and signal processing.
Dinda Pramanta is an Assistant Professor and a committee member of Mathematical-Data Science-AI Educational Program on Kyushu Institute of Information Sciences from 2021. His research interests include spiking neural networks, hardware, and AI for educational purposes.
Yuichiro Tanaka is an Assistant Professor with Research Center for Neuromorphic AI Hardware, Kyushu Institute of Technology, Japan. His research interests include soft computing, neural networks, hardware, and home service robots. He is a member of IEEE and JNNS.