Sentiment Analysis in Social Networks

· · ·
· Morgan Kaufmann
E-Book
284
Seiten
Zulässig
Bewertungen und Rezensionen werden nicht geprüft  Weitere Informationen

Über dieses E-Book

The aim of Sentiment Analysis is to define automatic tools able to extract subjective information from texts in natural language, such as opinions and sentiments, in order to create structured and actionable knowledge to be used by either a decision support system or a decision maker. Sentiment analysis has gained even more value with the advent and growth of social networking. Sentiment Analysis in Social Networks begins with an overview of the latest research trends in the field. It then discusses the sociological and psychological processes underling social network interactions. The book explores both semantic and machine learning models and methods that address context-dependent and dynamic text in online social networks, showing how social network streams pose numerous challenges due to their large-scale, short, noisy, context- dependent and dynamic nature. Further, this volume: - Takes an interdisciplinary approach from a number of computing domains, including natural language processing, machine learning, big data, and statistical methodologies - Provides insights into opinion spamming, reasoning, and social network analysis - Shows how to apply sentiment analysis tools for a particular application and domain, and how to get the best results for understanding the consequences - Serves as a one-stop reference for the state-of-the-art in social media analytics - Takes an interdisciplinary approach from a number of computing domains, including natural language processing, big data, and statistical methodologies - Provides insights into opinion spamming, reasoning, and social network mining - Shows how to apply opinion mining tools for a particular application and domain, and how to get the best results for understanding the consequences - Serves as a one-stop reference for the state-of-the-art in social media analytics

Autoren-Profil

Dr. Federico Alberto Pozzi received the Ph.D. in Computer Science at the University of Milano - Bicocca (Italy). His Ph.D. thesis is focused on Probabilistic Relational Models for Sentiment Analysis in Social Networks. His research interests primarily focus on Data Mining, Text Mining, Machine Learning, Natural Language Processing and Social Network Analysis, in particular applied to Sentiment Analysis and Community Discovery in Social Networks. He currently works at SAS Institute (Italy) as Senior Solutions Specialist - Integrated Marketing Management & Analytics.Dr. Elisabetta Fersini is currently a postdoctoral research fellow at the University of Milano - Bicocca (Italy). Her research activity is mainly focused on statistical relational learning with particular interests in supervised and unsupervised classification. The research activity finds application to Web/Text mining, Sentiment Analysis, Social Network Analysis, e-Justice and Bioinformatics. She actively participated to several national and international research projects. She has been an evaluator for international research projects and member of different scientific committees. She co-founded an academic spin-off specialized in sentiment analysis and community discovery in social networks.Prof. Enza Messina is a Professor in Operations Research at the Department of Informatics Systems and Communications, University of Milano-Bicocca, where she leads the research Laboratory MIND (Models in decision making and data analysis). She holds a Ph.D. in Computational Mathematics and Operations Research from the University of Milano. Her research activity is mainly focused on decision models under uncertainty and more recently on statistical relational models for data analysis and knowledge extraction. In particular, she developed relational classi_x000C_cation and clustering models that finds applications in different domains such as systems biology, e-justice, text mining and social network analysis.Dr Bing Liu is an Associate Professor at the College of Agriculture, Nanjing Agricultural University, China. He received his PhD in Information Agriculture in 2016 from Nanjing Agricultural University. His research areas include extreme climate effects on crop growth, yield, and quality; agricultural systems modelling; and climate change impact assessment and adaptation.

Dieses E-Book bewerten

Deine Meinung ist gefragt!

Informationen zum Lesen

Smartphones und Tablets
Nachdem du die Google Play Bücher App für Android und iPad/iPhone installiert hast, wird diese automatisch mit deinem Konto synchronisiert, sodass du auch unterwegs online und offline lesen kannst.
Laptops und Computer
Im Webbrowser auf deinem Computer kannst du dir Hörbucher anhören, die du bei Google Play gekauft hast.
E-Reader und andere Geräte
Wenn du Bücher auf E-Ink-Geräten lesen möchtest, beispielsweise auf einem Kobo eReader, lade eine Datei herunter und übertrage sie auf dein Gerät. Eine ausführliche Anleitung zum Übertragen der Dateien auf unterstützte E-Reader findest du in der Hilfe.