Semigroups and Their Subsemigroup Lattices

·
· Mathematics and Its Applications សៀវភៅទី 379 · Springer Science & Business Media
សៀវភៅ​អេឡិចត្រូនិច
380
ទំព័រ
ការវាយតម្លៃ និងមតិវាយតម្លៃមិនត្រូវបានផ្ទៀងផ្ទាត់ទេ ស្វែងយល់បន្ថែម

អំពីសៀវភៅ​អេឡិចត្រូនិកនេះ

0.1. General remarks. For any algebraic system A, the set SubA of all subsystems of A partially ordered by inclusion forms a lattice. This is the subsystem lattice of A. (In certain cases, such as that of semigroups, in order to have the right always to say that SubA is a lattice, we have to treat the empty set as a subsystem.) The study of various inter-relationships between systems and their subsystem lattices is a rather large field of investigation developed over many years. This trend was formed first in group theory; basic relevant information up to the early seventies is contained in the book [Suz] and the surveys [K Pek St], [Sad 2], [Ar Sad], there is also a quite recent book [Schm 2]. As another inspiring source, one should point out a branch of mathematics to which the book [Baer] was devoted. One of the key objects of examination in this branch is the subspace lattice of a vector space over a skew field. A more general approach deals with modules and their submodule lattices. Examining subsystem lattices for the case of modules as well as for rings and algebras (both associative and non-associative, in particular, Lie algebras) began more than thirty years ago; there are results on this subject also for lattices, Boolean algebras and some other types of algebraic systems, both concrete and general. A lot of works including several surveys have been published here.

វាយតម្លៃសៀវភៅ​អេឡិចត្រូនិកនេះ

ប្រាប់យើងអំពីការយល់ឃើញរបស់អ្នក។

អាន​ព័ត៌មាន

ទូរសព្ទឆ្លាតវៃ និង​ថេប្លេត
ដំឡើងកម្មវិធី Google Play Books សម្រាប់ Android និង iPad/iPhone ។ វា​ធ្វើសមកាលកម្ម​ដោយស្វ័យប្រវត្តិជាមួយ​គណនី​របស់អ្នក​ និង​អនុញ្ញាតឱ្យ​អ្នកអានពេល​មានអ៊ីនធឺណិត ឬគ្មាន​អ៊ីនធឺណិត​នៅគ្រប់ទីកន្លែង។
កុំព្យូទ័រ​យួរដៃ និងកុំព្យូទ័រ
អ្នកអាចស្ដាប់សៀវភៅជាសំឡេងដែលបានទិញនៅក្នុង Google Play ដោយប្រើកម្មវិធីរុករកតាមអ៊ីនធឺណិតក្នុងកុំព្យូទ័ររបស់អ្នក។
eReaders និង​ឧបករណ៍​ផ្សេង​ទៀត
ដើម្បីអាននៅលើ​ឧបករណ៍ e-ink ដូចជា​ឧបករណ៍អាន​សៀវភៅអេឡិចត្រូនិក Kobo អ្នកនឹងត្រូវ​ទាញយក​ឯកសារ ហើយ​ផ្ទេរវាទៅ​ឧបករណ៍​របស់អ្នក។ សូមអនុវត្តតាម​ការណែនាំលម្អិតរបស់មជ្ឈមណ្ឌលជំនួយ ដើម្បីផ្ទេរឯកសារ​ទៅឧបករណ៍អានសៀវភៅ​អេឡិចត្រូនិកដែលស្គាល់។