Semantic Relations Between Nominals

· · ·
· Springer Nature
E-grāmata
107
Lappuses
Atsauksmes un vērtējumi nav pārbaudīti. Uzzināt vairāk

Par šo e-grāmatu

People make sense of a text by identifying the semantic relations which connect the entities or concepts described by that text. A system which aspires to human-like performance must also be equipped to identify, and learn from, semantic relations in the texts it processes. Understanding even a simple sentence such as "Opportunity and Curiosity find similar rocks on Mars" requires recognizing relations (rocks are located on Mars, signalled by the word on) and drawing on already known relations (Opportunity and Curiosity are instances of the class of Mars rovers). A language-understanding system should be able to find such relations in documents and progressively build a knowledge base or even an ontology. Resources of this kind assist continuous learning and other advanced language-processing tasks such as text summarization, question answering and machine translation. The book discusses the recognition in text of semantic relations which capture interactions between base noun phrases.After a brief historical background, we introduce a range of relation inventories of varying granularity, which have been proposed by computational linguists. There is also variation in the scale at which systems operate, from snippets all the way to the whole Web, and in the techniques of recognizing relations in texts, from full supervision through weak or distant supervision to self-supervised or completely unsupervised methods. A discussion of supervised learning covers available datasets, feature sets which describe relation instances, and successful algorithms. An overview of weakly supervised and unsupervised learning zooms in on the acquisition of relations from large corpora with hardly any annotated data. We show how bootstrapping from seed examples or patterns scales up to very large text collections on the Web. We also present machine learning techniques in which data redundancy and variability lead to fast and reliable relation extraction.

Par autoru

Vivi Nastase holds a Ph.D. from the University of Ottawa. A research associate at the Univer sity of Stuttgart, she works mainly on lexical semantics, semantic relations, knowledge acquisi tion, and language evolution.

Novērtējiet šo e-grāmatu

Izsakiet savu viedokli!

Informācija lasīšanai

Viedtālruņi un planšetdatori
Instalējiet lietotni Google Play grāmatas Android ierīcēm un iPad planšetdatoriem/iPhone tālruņiem. Lietotne tiks automātiski sinhronizēta ar jūsu kontu un ļaus lasīt saturu tiešsaistē vai bezsaistē neatkarīgi no jūsu atrašanās vietas.
Klēpjdatori un galddatori
Varat klausīties pakalpojumā Google Play iegādātās audiogrāmatas, izmantojot datora tīmekļa pārlūkprogrammu.
E-lasītāji un citas ierīces
Lai lasītu grāmatas tādās elektroniskās tintes ierīcēs kā Kobo e-lasītāji, nepieciešams lejupielādēt failu un pārsūtīt to uz savu ierīci. Izpildiet palīdzības centrā sniegtos detalizētos norādījumus, lai pārsūtītu failus uz atbalstītiem e-lasītājiem.