Data Assimilation: Mathematical Concepts and Instructive Examples

· Springer
Ebook
135
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

This book endeavours to give a concise contribution to understanding the data assimilation and related methodologies. The mathematical concepts and related algorithms are fully presented, especially for those facing this theme for the first time.

The first chapter gives a wide overview of the data assimilation steps starting from Gauss' first methods to the most recent as those developed under the Monte Carlo methods. The second chapter treats the representation of the physical system as an ontological basis of the problem. The third chapter deals with the classical Kalman filter, while the fourth chapter deals with the advanced methods based on recursive Bayesian Estimation. A special chapter, the fifth, deals with the possible applications, from the first Lorenz model, passing trough the biology and medicine up to planetary assimilation, mainly on Mars.

This book serves both teachers and college students, and other interested parties providing the algorithms andformulas to manage the data assimilation everywhere a dynamic system is present.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.