Rings Close to Regular

· Mathematics and Its Applications 545-kitob · Springer Science & Business Media
E-kitob
350
Sahifalar soni
Reytinglar va sharhlar tasdiqlanmagan  Batafsil

Bu e-kitob haqida

Preface All rings are assumed to be associative and (except for nilrings and some stipulated cases) to have nonzero identity elements. A ring A is said to be regular if for every element a E A, there exists an element b E A with a = aba. Regular rings are well studied. For example, [163] and [350] are devoted to regular rings. A ring A is said to be tr-regular if for every element a E A, there is an element n b E A such that an = anba for some positive integer n. A ring A is said to be strongly tr-regular if for every a E A, there is a positive integer n with n 1 n an E a + An Aa +1. It is proved in [128] that A is a strongly tr-regular ring if and only if for every element a E A, there is a positive integer m with m 1 am E a + A. Every strongly tr-regular ring is tr-regular [38]. If F is a division ring and M is a right vector F-space with infinite basis {ei}~l' then End(MF) is a regular (and tr-regular) ring that is not strongly tr-regular. The factor ring of the ring of integers with respect to the ideal generated by the integer 4 is a strongly tr-regular ring that is not regular.

Muallif haqida

Askar Tuganbaev received his Ph.D. at the Moscow State University in 1978 and has been a professor at Moscow Power Engineering Institute (Technological University) since 1978. He is the author of three other monographs on ring theory and has written numerous articles on ring theory.

Bu e-kitobni baholang

Fikringizni bildiring.

Qayerda o‘qiladi

Smartfonlar va planshetlar
Android va iPad/iPhone uchun mo‘ljallangan Google Play Kitoblar ilovasini o‘rnating. U hisobingiz bilan avtomatik tazrda sinxronlanadi va hatto oflayn rejimda ham kitob o‘qish imkonini beradi.
Noutbuklar va kompyuterlar
Google Play orqali sotib olingan audiokitoblarni brauzer yordamida tinglash mumkin.
Kitob o‘qish uchun mo‘ljallangan qurilmalar
Kitoblarni Kobo e-riderlar kabi e-siyoh qurilmalarida oʻqish uchun faylni yuklab olish va qurilmaga koʻchirish kerak. Fayllarni e-riderlarga koʻchirish haqida batafsil axborotni Yordam markazidan olishingiz mumkin.