Riemannian Geometry

· Graduate Texts in Mathematics 171. књига · Springer Science & Business Media
E-knjiga
198
Stranica
Ocene i recenzije nisu verifikovane  Saznajte više

O ovoj e-knjizi

This book is meant to be an introduction to Riemannian geometry. The reader is assumed to have some knowledge of standard manifold theory, including basic theory of tensors, forms, and Lie groups. At times we shall also assume familiarity with algebraic topology and de Rham cohomology. Specifically, we recommend that the reader is familiar with texts like [14] or[76, vol. 1]. For the readers who have only learned something like the first two chapters of [65], we have an appendix which covers Stokes' theorem, Cech cohomology, and de Rham cohomology. The reader should also have a nodding acquaintance with ordinary differential equations. For this, a text like [59] is more than sufficient. Most of the material usually taught in basic Riemannian geometry, as well as several more advanced topics, is presented in this text. Many of the theorems from Chapters 7 to 11 appear for the first time in textbook form. This is particularly surprising as we have included essentially only the material students ofRiemannian geometry must know. The approach we have taken deviates in some ways from the standard path. First and foremost, we do not discuss variational calculus, which is usually the sine qua non of the subject. Instead, we have taken a more elementary approach that simply uses standard calculus together with some techniques from differential equations.

Ocenite ovu e-knjigu

Javite nam svoje mišljenje.

Informacije o čitanju

Pametni telefoni i tableti
Instalirajte aplikaciju Google Play knjige za Android i iPad/iPhone. Automatski se sinhronizuje sa nalogom i omogućava vam da čitate onlajn i oflajn gde god da se nalazite.
Laptopovi i računari
Možete da slušate audio-knjige kupljene na Google Play-u pomoću veb-pregledača na računaru.
E-čitači i drugi uređaji
Da biste čitali na uređajima koje koriste e-mastilo, kao što su Kobo e-čitači, treba da preuzmete fajl i prenesete ga na uređaj. Pratite detaljna uputstva iz centra za pomoć da biste preneli fajlove u podržane e-čitače.