Resilient Control Architectures and Power Systems

Β· Β· Β·
Β· John Wiley & Sons
ЭлСктронная ΠΊΠ½ΠΈΠ³Π°
336
ΠšΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²ΠΎ страниц
ΠžΡ†Π΅Π½ΠΊΠΈ ΠΈ ΠΎΡ‚Π·Ρ‹Π²Ρ‹ Π½Π΅ ΠΏΡ€ΠΎΠ²Π΅Ρ€Π΅Π½Ρ‹. ΠŸΠΎΠ΄Ρ€ΠΎΠ±Π½Π΅Π΅β€¦

Об элСктронной ΠΊΠ½ΠΈΠ³Π΅

Master the fundamentals of resilient power grid control applications with this up-to-date resource from four industry leaders

Resilient Control Architectures and Power Systems delivers a unique perspective on the singular challenges presented by increasing automation in society. In particular, the book focuses on the difficulties presented by the increased automation of the power grid. The authors provide a simulation of this real-life system, offering an accurate and comprehensive picture of a how a power control system works and, even more importantly, how it can fail.

The editors invite various experts in the field to describe how and why power systems fail due to cyber security threats, human error, and complex interdependencies. They also discuss promising new concepts researchers are exploring that promise to make these control systems much more resilient to threats of all kinds. Finally, resilience fundamentals and applications are also investigated to allow the reader to apply measures that ensure adequate operation in complex control systems.

Among a variety of other foundational and advanced topics, you'll learn about:

  • The fundamentals of power grid infrastructure, including grid architecture, control system architecture, and communication architecture
  • The disciplinary fundamentals of control theory, human-system interfaces, and cyber security
  • The fundamentals of resilience, including the basis of resilience, its definition, and benchmarks, as well as cross-architecture metrics and considerations
  • The application of resilience concepts, including cyber security challenges, control challenges, and human challenges
  • A discussion of research challenges facing professionals in this field today

Perfect for research students and practitioners in fields concerned with increasing power grid automation, Resilient Control Architectures and Power Systems also has a place on the bookshelves of members of the Control Systems Society, the Systems, Man and Cybernetics Society, the Computer Society, the Power and Energy Society, and similar organizations.

Об Π°Π²Ρ‚ΠΎΡ€Π΅

Craig Rieger, PhD, is Chief Control Systems Research Engineer at the Idaho National Laboratory. His research focus is on next generation resilient control systems.

Ronald Boring, PhD, is Researcher and Principal Investigator at Idaho National Laboratory. His primary research foci are on human reliability, human factors, and human-computer interaction forums.

Brian Johnson, PhD, is University Distinguished Professor and Schweitzer Engineering Laboratories Endowed Chair in Power Engineering in the Department of Electrical and Computer Engineering at the University of Idaho.

Timothy McJunkin is an Electrical Engineer at the Idaho National Laboratory. His primary research foci are on the development of interest resilient control of critical infrastructure, Smart Grid for renewable energy integration, and design of zero carbon microgrids.

ΠžΡ†Π΅Π½ΠΈΡ‚Π΅ ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΡƒΡŽ ΠΊΠ½ΠΈΠ³Ρƒ

ΠŸΠΎΠ΄Π΅Π»ΠΈΡ‚Π΅ΡΡŒ с Π½Π°ΠΌΠΈ своим ΠΌΠ½Π΅Π½ΠΈΠ΅ΠΌ.

Π“Π΄Π΅ Ρ‡ΠΈΡ‚Π°Ρ‚ΡŒ ΠΊΠ½ΠΈΠ³ΠΈ

Π‘ΠΌΠ°Ρ€Ρ‚Ρ„ΠΎΠ½Ρ‹ ΠΈ ΠΏΠ»Π°Π½ΡˆΠ΅Ρ‚Ρ‹
УстановитС ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Google Play Книги для Android ΠΈΠ»ΠΈ iPad/iPhone. Оно синхронизируСтся с вашим Π°ΠΊΠΊΠ°ΡƒΠ½Ρ‚ΠΎΠΌ автоматичСски, ΠΈ Π²Ρ‹ смоТСтС Ρ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π»ΡŽΠ±ΠΈΠΌΡ‹Π΅ ΠΊΠ½ΠΈΠ³ΠΈ ΠΎΠ½Π»Π°ΠΉΠ½ ΠΈ ΠΎΡ„Π»Π°ΠΉΠ½ Π³Π΄Π΅ ΡƒΠ³ΠΎΠ΄Π½ΠΎ.
Ноутбуки ΠΈ Π½Π°ΡΡ‚ΠΎΠ»ΡŒΠ½Ρ‹Π΅ ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Ρ‹
Π‘Π»ΡƒΡˆΠ°ΠΉΡ‚Π΅ Π°ΡƒΠ΄ΠΈΠΎΠΊΠ½ΠΈΠ³ΠΈ ΠΈΠ· Google Play Π² Π²Π΅Π±-Π±Ρ€Π°ΡƒΠ·Π΅Ρ€Π΅ Π½Π° ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π΅.
Устройства для чтСния ΠΊΠ½ΠΈΠ³
Π§Ρ‚ΠΎΠ±Ρ‹ ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΡŒ ΠΊΠ½ΠΈΠ³Ρƒ Π½Π° Ρ‚Π°ΠΊΠΎΠΌ устройствС для чтСния, ΠΊΠ°ΠΊ Kobo, скачайтС Ρ„Π°ΠΉΠ» ΠΈ Π΄ΠΎΠ±Π°Π²ΡŒΡ‚Π΅ Π΅Π³ΠΎ Π½Π° устройство. ΠŸΠΎΠ΄Ρ€ΠΎΠ±Π½Ρ‹Π΅ инструкции ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ Π² Π‘ΠΏΡ€Π°Π²ΠΎΡ‡Π½ΠΎΠΌ Ρ†Π΅Π½Ρ‚Ρ€Π΅.