Residue Currents and Bezout Identities

· · ·
· Progress in Mathematics 114 巻 · Birkhäuser
電子書籍
160
ページ
評価とレビューは確認済みではありません 詳細

この電子書籍について

A very primitive form of this monograph has existed for about two and a half years in the form of handwritten notes of a course that Alain Y ger gave at the University of Maryland. The objective, all along, has been to present a coherent picture of the almost mysterious role that analytic methods and, in particular, multidimensional residues, have recently played in obtaining effective estimates for problems in commutative algebra [71;5]* Our original interest in the subject rested on the fact that the study of many questions in harmonic analysis, like finding all distribution solutions (or finding out whether there are any) to a system of linear partial differential equa tions with constant coefficients (or, more generally, convolution equations) in ]R. n, can be translated into interpolation problems in spaces of entire functions with growth conditions. This idea, which one can trace back to Euler, is the basis of Ehrenpreis's Fundamental Principle for partial differential equations [37;5], [56;5], and has been explicitly stated, for convolution equations, in the work of Berenstein and Taylor [9;5] (we refer to the survey [8;5] for complete references. ) One important point in [9;5] was the use of the Jacobi interpo lation formula, but otherwise, the representation of solutions obtained in that paper were not explicit because of the use of a-methods to prove interpolation results.

この電子書籍を評価する

ご感想をお聞かせください。

読書情報

スマートフォンとタブレット
AndroidiPad / iPhone 用の Google Play ブックス アプリをインストールしてください。このアプリがアカウントと自動的に同期するため、どこでもオンラインやオフラインで読むことができます。
ノートパソコンとデスクトップ パソコン
Google Play で購入したオーディブックは、パソコンのウェブブラウザで再生できます。
電子書籍リーダーなどのデバイス
Kobo 電子書籍リーダーなどの E Ink デバイスで読むには、ファイルをダウンロードしてデバイスに転送する必要があります。サポートされている電子書籍リーダーにファイルを転送する方法について詳しくは、ヘルプセンターをご覧ください。