Reproducible Econometrics Using R

· Oxford University Press
Ebook
352
Pages
Admissible
Les notes et les avis ne sont pas vérifiés  En savoir plus

À propos de cet ebook

Across the social sciences there has been increasing focus on reproducibility, i.e., the ability to examine a study's data and methods to ensure accuracy by reproducing the study. Reproducible Econometrics Using R combines an overview of key issues and methods with an introduction to how to use them using open source software (R) and recently developed tools (R Markdown and bookdown) that allow the reader to engage in reproducible econometric research. Jeffrey S. Racine provides a step-by-step approach, and covers five sets of topics, i) linear time series models, ii) robust inference, iii) robust estimation, iv) model uncertainty, and v) advanced topics. The time series material highlights the difference between time-series analysis, which focuses on forecasting, versus cross-sectional analysis, where the focus is typically on model parameters that have economic interpretations. For the time series material, the reader begins with a discussion of random walks, white noise, and non-stationarity. The reader is next exposed to the pitfalls of using standard inferential procedures that are popular in cross sectional settings when modelling time series data, and is introduced to alternative procedures that form the basis for linear time series analysis. For the robust inference material, the reader is introduced to the potential advantages of bootstrapping and the Jackknifing versus the use of asymptotic theory, and a range of numerical approaches are presented. For the robust estimation material, the reader is presented with a discussion of issues surrounding outliers in data and methods for addressing their presence. Finally, the model uncertainly material outlines two dominant approaches for dealing with model uncertainty, namely model selection and model averaging. Throughout the book there is an emphasis on the benefits of using R and other open source tools for ensuring reproducibility. The advanced material covers machine learning methods (support vector machines that are useful for classification) and nonparametric kernel regression which provides the reader with more advanced methods for confronting model uncertainty. The book is well suited for advanced undergraduate and graduate students alike. Assignments, exams, slides, and a solution manual are available for instructors.

Quelques mots sur l'auteur

Jeffrey S. Racine is the Senator William McMaster Chair in Econometrics and Professor in the Department of Economics and a Professor in the Graduate Program in Statistics in the Department of Mathematics and Statistics at McMaster University. He is a Fellow of the Journal of Econometrics.

Attribuez une note à ce ebook

Faites-nous part de votre avis.

Informations sur la lecture

Téléphones intelligents et tablettes
Installez l'appli Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play en utilisant le navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour pouvoir lire des ouvrages sur des appareils utilisant la technologie e-Ink, comme les liseuses électroniques Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du centre d'aide pour transférer les fichiers sur les liseuses électroniques compatibles.