Reinforcement Learning: Mastering Intelligent Decision Making for Autonomous Machines

┬╖ Robotics Science 50 рммрм╣рм┐ ┬╖ One Billion Knowledgeable
рмЗрммрнБрмХрнН
234
рмкрнГрм╖рнНрмарм╛рмЧрнБрнЬрм┐рмХ
рмпрнЛрмЧрнНрнЯ
рм░рнЗрмЯрм┐рмВ рмУ рм╕рморнАрмХрнНрм╖рм╛рмЧрнБрнЬрм┐рмХрнБ рмпрм╛рмЮрнНрмЪ рмХрм░рм╛рмпрм╛рмЗрмирм╛рм╣рм┐рмБ ┬армЕрмзрм┐рмХ рмЬрм╛рмгрмирнНрмдрнБ

рмПрм╣рм┐ рмЗрммрнБрмХрнН рммрм┐рм╖рнЯрм░рнЗ

In the rapidly evolving field of robotics, reinforcement learning stands as one of the most promising methods for building autonomous systems. This book, Reinforcement Learning, provides an indepth exploration of this powerful technique, guiding readers through its foundational principles to its latest advancements. Perfect for professionals, graduate students, and enthusiasts alike, this book offers a detailed yet accessible approach to understanding reinforcement learning in the context of robotics.

Chapters Brief Overview:


1: Reinforcement learning: Introduces the core concept of reinforcement learning, emphasizing its role in autonomous systems.
2: Markov decision process: Explains the mathematical framework for decisionmaking under uncertainty, a key foundation for reinforcement learning.


3: Temporal difference learning: Explores methods for learning from experience without needing a model of the environment.


4: Bellman equation: Discusses the critical recursive relationship that underlies many reinforcement learning algorithms.


5: Qlearning: Focuses on an offpolicy reinforcement learning algorithm that learns optimal actions without a model of the environment.


6: Multiarmed bandit: Covers a simpler reinforcement learning problem that models decisionmaking in uncertain environments.


7: Partially observable Markov decision process: Expands on traditional Markov decision processes by incorporating hidden states.


8: Gittins index: Introduces a strategy for balancing exploration and exploitation in multiarmed bandit problems.


9: StateтАУactionтАУrewardтАУstateтАУaction: Delves into the temporal patterns in reinforcement learning that inform decisionmaking strategies.


10: Protovalue function: Explores methods for approximating value functions, aiding in the efficiency of learning.


11: Automatic basis function construction: Focuses on automatic methods for constructing features to improve learning efficiency.


12: Meanfield game theory: Discusses a framework for modeling interactions in largescale multiagent systems.


13: Multiagent pathfinding: Introduces algorithms for coordinating multiple agents to reach their destinations efficiently.


14: Modelfree (reinforcement learning): Discusses methods that do not rely on a model of the environment for learning.


15: Deep reinforcement learning: Combines deep learning and reinforcement learning to handle complex, highdimensional environments.


16: Multiagent reinforcement learning: Focuses on strategies for learning in environments with multiple interacting agents.


17: Selfplay: Explores the concept of agents learning through competition with themselves, a critical component of advanced learning strategies.


18: Proximal policy optimization: Introduces an algorithm for optimizing policies in reinforcement learning with improved stability and performance.


19: Explorationexploitation dilemma: Discusses the fundamental challenge of balancing exploration of new strategies with exploiting known ones.


20: Reinforcement learning from human feedback: Examines methods for improving reinforcement learning using human input.


21: Imitation learning: Focuses on techniques where agents learn by mimicking the actions of human experts.


Reinforcement Learning is not just a technical guide, but an essential resource for understanding how autonomous systems can adapt and make decisions in a wide range of environments. Whether you're a robotics professional, a student, or a hobbyist, this book offers insights that will equip you with the knowledge needed to master reinforcement learning and apply it to realworld robotic systems.

рмПрм╣рм┐ рмЗрммрнБрмХрнНтАНрмХрнБ рморнВрм▓рнНрнЯрм╛рмЩрнНрмХрми рмХрм░рмирнНрмдрнБ

рмЖрмкрмг рмХрмг рмнрм╛рммрнБрмЫрмирнНрмдрм┐ рмдрм╛рм╣рм╛ рмЖрмормХрнБ рмЬрмгрм╛рмирнНрмдрнБред

рмкрнЭрм┐рммрм╛ рмкрм╛рмЗрмБ рмдрмернНрнЯ

рм╕рнНрморм╛рм░рнНрмЯрмлрнЛрми рмУ рмЯрм╛рммрм▓рнЗрмЯ
Google Play Books рмЖрмкрнНрмХрнБ, Android рмУ iPad/iPhone рмкрм╛рмЗрмБ рмЗрмирм╖рнНрмЯрм▓рнН рмХрм░рмирнНрмдрнБред рмПрм╣рм╛ рм╕рнНрм╡рмЪрм╛рм│рм┐рмд рмнрм╛рммрнЗ рмЖрмкрмгрмЩрнНрмХ рмЖрмХрм╛рмЙрмгрнНрмЯрм░рнЗ рм╕рм┐рмЩрнНрмХ рм╣рнЛтАНрмЗрмпрм┐рмм рмПрммрмВ рмЖрмкрмг рмпрнЗрмЙрмБрмарм┐ рмерм╛рмЖрмирнНрмдрнБ рмирм╛ рмХрм╛рм╣рм┐рмБрмХрм┐ рмЖрмирм▓рм╛рмЗрмирнН рмХрм┐рморнНрммрм╛ рмЕрмлрм▓рм╛рмЗрмирнНтАНрм░рнЗ рмкрнЭрм┐рммрм╛ рмкрм╛рмЗрмБ рмЕрмирнБрмормдрм┐ рмжрнЗрммред
рм▓рм╛рмкрмЯрмк рмУ рмХрморнНрмкрнНрнЯрнБрмЯрм░
рмирм┐рмЬрм░ рмХрморнНрмкрнНрнЯрнБрмЯрм░рнНтАНрм░рнЗ рмерм┐рммрм╛ рн▒рнЗрммрнН рммрнНрм░рм╛рмЙрмЬрм░рнНтАНрмХрнБ рммрнНрнЯрммрм╣рм╛рм░ рмХрм░рм┐ Google Playрм░рнБ рмХрм┐рмгрм┐рмерм┐рммрм╛ рмЕрмбрм┐рмУрммрнБрмХрнНтАНрмХрнБ рмЖрмкрмг рм╢рнБрмгрм┐рмкрм╛рм░рм┐рммрнЗред
рмЗ-рм░рм┐рмбрм░рнН рмУ рмЕрмирнНрнЯ рмбрм┐рмнрм╛рмЗрм╕рнНтАНрмЧрнБрнЬрм┐рмХ
Kobo eReaders рмкрм░рм┐ e-ink рмбрм┐рмнрм╛рмЗрм╕рмЧрнБрмбрм╝рм┐рмХрм░рнЗ рмкрмврм╝рм┐рммрм╛ рмкрм╛рмЗрмБ, рмЖрмкрмгрмЩрнНрмХрнБ рмПрмХ рмлрм╛рмЗрм▓ рмбрм╛рмЙрмирм▓рнЛрмб рмХрм░рм┐ рмПрм╣рм╛рмХрнБ рмЖрмкрмгрмЩрнНрмХ рмбрм┐рмнрм╛рмЗрм╕рмХрнБ рмЯрнНрм░рм╛рмирнНрм╕рмлрм░ рмХрм░рм┐рммрм╛рмХрнБ рм╣рнЗрммред рм╕рморм░рнНрмерм┐рмд eReadersрмХрнБ рмлрм╛рмЗрм▓рмЧрнБрмбрм╝рм┐рмХ рмЯрнНрм░рм╛рмирнНрм╕рмлрм░ рмХрм░рм┐рммрм╛ рмкрм╛рмЗрмБ рм╕рм╣рм╛рнЯрмдрм╛ рмХрнЗрмирнНрмжрнНрм░рм░рнЗ рмерм┐рммрм╛ рм╕рммрм┐рм╢рнЗрм╖ рмирм┐рм░рнНрмжрнНрмжрнЗрм╢рм╛рммрм│рнАрмХрнБ рмЕрмирнБрм╕рм░рмг рмХрм░рмирнНрмдрнБред

рм╕рм┐рм░рм┐рмЬрнН рмЬрм╛рм░рм┐ рм░рмЦрмирнНрмдрнБ

Fouad Sabry рмжрнНрн▒рм╛рм░рм╛ рмЕрмзрм┐рмХ

рм╕рморм╛рми рмЗрммрнБрмХ