Regular Differential Forms

┬╖
┬╖ Contemporary mathematics - American Mathematical Society рокрпБродрпНродроХроорпН 79 ┬╖ American Mathematical Soc.
рооро┐ройрпНрокрпБродрпНродроХроорпН
153
рокроХрпНроХроЩрпНроХро│рпН
ро░рпЗроЯрпНроЯро┐роЩрпНроХрпБроХро│рпБроорпН роХро░рпБродрпНродрпБроХро│рпБроорпН роЪро░ро┐рокро╛ро░рпНроХрпНроХрокрпНрокроЯрпБро╡родро┐ро▓рпНро▓рпИ┬ароорпЗро▓рпБроорпН роЕро▒ро┐роХ

роЗроирпНрод рооро┐ройрпНрокрпБродрпНродроХродрпНродрпИрокрпН рокро▒рпНро▒ро┐

This book is aimed at students and researchers in commutative algebra, algebraic geometry, and neighboring disciplines. The book will provide readers with new insight into differential forms and may stimulate new research through the many open questions it raises. The authors introduce various sheaves of differential forms for equidimensional morphisms of finite type between noetherian schemes, the most important being the sheaf of regular differential forms. It is known in many cases that the top degree regular differentials form a dualizing sheaf in the sense of duality theory. All constructions in the book are purely local and require only prerequisites from the theory of commutative noetherian rings and their Kahler differentials. The authors study the relations between the sheaves under consideration and give some applications to local properties of morphisms.The investigation of the 'fundamental class', a canonical homomorphism from Kahler to regular differential forms, is a major topic. The book closes with applications to curve singularities. While regular differential forms have been previously studied mainly in the 'absolute case' (that is, for algebraic varieties over fields), this book deals with the relative situation. Moreover, the authors strive to avoid 'separability assumptions'. Once the construction of regular differential forms is given, many results can be transferred from the absolute to the relative case.

роЗроирпНрод рооро┐ройрпНрокрпБродрпНродроХродрпНродрпИ роородро┐рокрпНрокро┐роЯрпБроЩрпНроХро│рпН

роЙроЩрпНроХро│рпН роХро░рпБродрпНродрпИрокрпН рокроХро┐ро░ро╡рпБроорпН.

рокроЯро┐рокрпНрокродрпБ роХрпБро▒ро┐родрпНрод родроХро╡ро▓рпН

ро╕рпНрооро╛ро░рпНроЯрпНроГрокрпЛройрпНроХро│рпН рооро▒рпНро▒рпБроорпН роЯрпЗрокрпНро▓рпЖроЯрпНроХро│рпН
Android рооро▒рпНро▒рпБроорпН iPad/iPhoneроХрпНроХро╛рой Google Play рокрпБроХрпНро╕рпН роЖрокрпНро╕рпИ роиро┐ро▒рпБро╡рпБроорпН. роЗродрпБ родро╛ройро╛роХро╡рпЗ роЙроЩрпНроХро│рпН роХрогроХрпНроХрпБроЯройрпН роТродрпНродро┐роЪрпИроХрпНроХрпБроорпН рооро▒рпНро▒рпБроорпН роОроЩрпНроХро┐ро░рпБроирпНродро╛ро▓рпБроорпН роЖройрпНро▓рпИройро┐ро▓рпН роЕро▓рпНро▓родрпБ роЖроГрокрпНро▓рпИройро┐ро▓рпН рокроЯро┐роХрпНроХ роЕройрпБроородро┐роХрпНроХрпБроорпН.
ро▓рпЗрокрпНроЯро╛рокрпНроХро│рпН рооро▒рпНро▒рпБроорпН роХроорпНрокрпНропрпВроЯрпНроЯро░рпНроХро│рпН
Google Playропро┐ро▓рпН ро╡ро╛роЩрпНроХро┐роп роЖроЯро┐ропрпЛ рокрпБродрпНродроХроЩрпНроХро│рпИ роЙроЩрпНроХро│рпН роХроорпНрокрпНропрпВроЯрпНроЯро░ро┐ройрпН ро╡ро▓рпИ роЙро▓ро╛ро╡ро┐ропро┐ро▓рпН роХрпЗроЯрпНроХро▓ро╛роорпН.
рооро┐ройрпНро╡ро╛роЪро┐рокрпНрокрпБ роЪро╛родройроЩрпНроХро│рпН рооро▒рпНро▒рпБроорпН рокро┐ро▒ роЪро╛родройроЩрпНроХро│рпН
Kobo роЗ-ро░рпАроЯро░рпНроХро│рпН рокрпЛройрпНро▒ роЗ-роЗроЩрпНроХрпН роЪро╛родройроЩрпНроХро│ро┐ро▓рпН рокроЯро┐роХрпНроХ, роГрокрпИро▓рпИрокрпН рокродро┐ро╡ро┐ро▒роХрпНроХро┐ роЙроЩрпНроХро│рпН роЪро╛родройродрпНродро┐ро▒рпНроХрпБ рооро╛ро▒рпНро▒ро╡рпБроорпН. роЖродро░ро┐роХрпНроХрокрпНрокроЯрпБроорпН роЗ-ро░рпАроЯро░рпНроХро│рпБроХрпНроХрпБ роГрокрпИро▓рпНроХро│рпИ рооро╛ро▒рпНро▒, роЙродро╡ро┐ роорпИропродрпНродро┐ройрпН ро╡ро┐ро░ро┐ро╡ро╛рой ро╡ро┤ро┐роорпБро▒рпИроХро│рпИрокрпН рокро┐ройрпНрокро▒рпНро▒ро╡рпБроорпН.

родрпКроЯро░рпИ ро╡ро░ро┐роЪрпИрокрпНрокроЯрпБродрпНродрпБродро▓рпН

роорпЗро▓рпБроорпН Ernst Kunz роОро┤рпБродро┐ропро╡рпИ

роЗродрпИрокрпН рокрпЛройрпНро▒ рооро┐ройрпНрокрпБродрпНродроХроЩрпНроХро│рпН