Regular Differential Forms

·
· Contemporary mathematics - American Mathematical Society Bok 79 · American Mathematical Soc.
E-bok
153
Sider
Vurderinger og anmeldelser blir ikke kontrollert  Finn ut mer

Om denne e-boken

This book is aimed at students and researchers in commutative algebra, algebraic geometry, and neighboring disciplines. The book will provide readers with new insight into differential forms and may stimulate new research through the many open questions it raises. The authors introduce various sheaves of differential forms for equidimensional morphisms of finite type between noetherian schemes, the most important being the sheaf of regular differential forms. It is known in many cases that the top degree regular differentials form a dualizing sheaf in the sense of duality theory. All constructions in the book are purely local and require only prerequisites from the theory of commutative noetherian rings and their Kahler differentials. The authors study the relations between the sheaves under consideration and give some applications to local properties of morphisms.The investigation of the 'fundamental class', a canonical homomorphism from Kahler to regular differential forms, is a major topic. The book closes with applications to curve singularities. While regular differential forms have been previously studied mainly in the 'absolute case' (that is, for algebraic varieties over fields), this book deals with the relative situation. Moreover, the authors strive to avoid 'separability assumptions'. Once the construction of regular differential forms is given, many results can be transferred from the absolute to the relative case.

Vurder denne e-boken

Fortell oss hva du mener.

Hvordan lese innhold

Smarttelefoner og nettbrett
Installer Google Play Bøker-appen for Android og iPad/iPhone. Den synkroniseres automatisk med kontoen din og lar deg lese både med og uten nett – uansett hvor du er.
Datamaskiner
Du kan lytte til lydbøker du har kjøpt på Google Play, i nettleseren på datamaskinen din.
Lesebrett og andre enheter
For å lese på lesebrett som Kobo eReader må du laste ned en fil og overføre den til enheten din. Følg den detaljerte veiledningen i brukerstøtten for å overføre filene til støttede lesebrett.