Reduction, Approximation, Machine Learning, Surrogates, Emulators and Simulators: RAMSES

· · ·
· Lecture Notes in Computational Science and Engineering Buku 151 · Springer Nature
eBook
259
Halaman
Rating dan ulasan tidak diverifikasi  Pelajari Lebih Lanjut

Tentang eBook ini

This volume is focused on the review of recent algorithmic and mathematical advances and the development of new research directions for Mathematical Model Approximations via RAMSES (Reduced order models, Approximation theory, Machine learning, Surrogates, Emulators, Simulators) in the setting of parametrized partial differential equations also with sparse and noisy data in high-dimensional parameter spaces.

The book is a valuable resource for researchers, as well as masters and Ph.D students.

Tentang pengarang

Marta D'Elia is a Principal Scientist at Pasteur Labs and an Adjunct Professor at Stanford University (ICME). She previously worked at Meta as a Research Scientist and at Sandia National Laboratories (NM and CA) as a Principal Member of the Technical Staff. She holds a PhD in Applied Mathematics from Emory University. As a computational scientist, her work deals with the design and analysis of machine-learning models and data-driven algorithms for the simulation of complex, multiscale and multiphysics problems. In addition, she is an expert in nonlocal modeling and simulation, optimization, and uncertainty quantification.

Max Gunzburger is the Robert Lawton and Marie Krafft Emeritus Professor and Founding Chair of the Department of Scientific Computing at Florida State University and is currently a Senior Researcher at the University of Texas at Austin. His research interests spans the areas of numerical analysis, uncertainty quantification, nonlocal modeling, optimization and control, computational geometry, and partial differential equations with applications in diverse areas including fluid and solid mechanics, climate, materials, subsurface flows, image processing, diffusion processes, superconductivity, acoustics, and electromagnetics.

Gianluigi Rozza received his Ph.D. in Applied Mathematics at EPF Lausanne, Switzerland, in 2006 and he is currently full professor in Numerical Analysis and Scientific Computing at SISSA, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy, where he coordinated SISSA mathLab. His research focuses on reduced order methods in computational mechanics, including uncertainty quantification, automatic learning, optimal control, inverse problems and emerging technologies like digital twin in industry.

Giovanni Stabile is assistant professor (RTD-B) in numerical analysis at the Department of Pure and Applied Sciences, Universityof Urbino, Italy. From 2016 to 2022, he was assistant professor (RTD-A) and previously postDoc at SISSA, in Trieste, Italy. He received his Ph.D. in 2016 from a joint Ph.D. school between the TU Braunschweig in Germany and the University of Florence in Italy. He is recipient of the ERC Starting Grant "Data Aware efficient models of the urbaN microclimaTE (DANTE)”.

Beri rating eBook ini

Sampaikan pendapat Anda.

Informasi bacaan

Smartphone dan tablet
Instal aplikasi Google Play Buku untuk Android dan iPad/iPhone. Aplikasi akan disinkronkan secara otomatis dengan akun Anda dan dapat diakses secara online maupun offline di mana saja.
Laptop dan komputer
Anda dapat mendengarkan buku audio yang dibeli di Google Play menggunakan browser web komputer.
eReader dan perangkat lainnya
Untuk membaca di perangkat e-ink seperti Kobo eReaders, Anda perlu mendownload file dan mentransfernya ke perangkat Anda. Ikuti petunjuk Pusat bantuan yang mendetail untuk mentransfer file ke eReaders yang didukung.