Recommender Systems: A Multi-Disciplinary Approach

· ·
· CRC Press
I-Ebook
278
Amakhasi
Kufanelekile
Izilinganiso nezibuyekezo aziqinisekisiwe  Funda Kabanzi

Mayelana nale ebook

Recommender Systems: A Multi-Disciplinary Approach presents a multi-disciplinary approach for the development of recommender systems. It explains different types of pertinent algorithms with their comparative analysis and their role for different applications. This book explains the big data behind recommender systems, the marketing benefits, how to make good decision support systems, the role of machine learning and artificial networks, and the statistical models with two case studies. It shows how to design attack resistant and trust-centric recommender systems for applications dealing with sensitive data.

Features of this book:

  • Identifies and describes recommender systems for practical uses
  • Describes how to design, train, and evaluate a recommendation algorithm
  • Explains migration from a recommendation model to a live system with users
  • Describes utilization of the data collected from a recommender system to understand the user preferences
  • Addresses the security aspects and ways to deal with possible attacks to build a robust system

This book is aimed at researchers and graduate students in computer science, electronics and communication engineering, mathematical science, and data science.

Mayelana nomlobi

Monideepa Roy, Pushpendu Kar, Sujoy Datta

Nikeza le ebook isilinganiso

Sitshele ukuthi ucabangani.

Ulwazi lokufunda

Amasmathifoni namathebulethi
Faka uhlelo lokusebenza lwe-Google Play Amabhuku lwe-Android ne-iPad/iPhone. Livunyelaniswa ngokuzenzakalela ne-akhawunti yakho liphinde likuvumele ukuthi ufunde uxhunywe ku-inthanethi noma ungaxhunyiwe noma ngabe ukuphi.
Amakhompyutha aphathekayo namakhompyutha
Ungalalela ama-audiobook athengwe ku-Google Play usebenzisa isiphequluli sewebhu sekhompuyutha yakho.
Ama-eReaders namanye amadivayisi
Ukuze ufunde kumadivayisi e-e-ink afana ne-Kobo eReaders, uzodinga ukudawuniloda ifayela futhi ulidlulisele kudivayisi yakho. Landela imiyalelo Yesikhungo Sosizo eningiliziwe ukuze udlulise amafayela kuma-eReader asekelwayo.