Real Analysis through Modern Infinitesimals

· Encyclopedia of Mathematics and its Applications წიგნი 140 · Cambridge University Press
ელწიგნი
587
გვერდი
რეიტინგები და მიმოხილვები დაუდასტურებელია  შეიტყვეთ მეტი

ამ ელწიგნის შესახებ

Real Analysis Through Modern Infinitesimals provides a course on mathematical analysis based on Internal Set Theory (IST) introduced by Edward Nelson in 1977. After motivating IST through an ultrapower construction, the book provides a careful development of this theory representing each external class as a proper class. This foundational discussion, which is presented in the first two chapters, includes an account of the basic internal and external properties of the real number system as an entity within IST. In its remaining fourteen chapters, the book explores the consequences of the perspective offered by IST as a wide range of real analysis topics are surveyed. The topics thus developed begin with those usually discussed in an advanced undergraduate analysis course and gradually move to topics that are suitable for more advanced readers. This book may be used for reference, self-study, and as a source for advanced undergraduate or graduate courses.

ავტორის შესახებ

Nader Vakil is a Professor of Mathematics at Western Illinois University. He received his PhD from the University of Washington, Seattle, where he worked with Edwin Hewitt. His research interests centre on the foundation of mathematical analysis and applications of the theory of modern infinitesimals to topology and functional analysis.

შეაფასეთ ეს ელწიგნი

გვითხარით თქვენი აზრი.

ინფორმაცია წაკითხვასთან დაკავშირებით

სმარტფონები და ტაბლეტები
დააინსტალირეთ Google Play Books აპი Android და iPad/iPhone მოწყობილობებისთვის. ის ავტომატურად განახორციელებს სინქრონიზაციას თქვენს ანგარიშთან და საშუალებას მოგცემთ, წაიკითხოთ სასურველი კონტენტი ნებისმიერ ადგილას, როგორც ონლაინ, ისე ხაზგარეშე რეჟიმში.
ლეპტოპები და კომპიუტერები
Google Play-ში შეძენილი აუდიოწიგნების მოსმენა თქვენი კომპიუტერის ვებ-ბრაუზერის გამოყენებით შეგიძლიათ.
ელწამკითხველები და სხვა მოწყობილობები
ელექტრონული მელნის მოწყობილობებზე წასაკითხად, როგორიცაა Kobo eReaders, თქვენ უნდა ჩამოტვირთოთ ფაილი და გადაიტანოთ იგი თქვენს მოწყობილობაში. დახმარების ცენტრის დეტალური ინსტრუქციების მიხედვით გადაიტანეთ ფაილები მხარდაჭერილ ელწამკითხველებზე.