Rational Homotopy Theory

· ·
· Graduate Texts in Mathematics Bok 205 · Springer Science & Business Media
E-bok
539
Sidor
Betyg och recensioner verifieras inte  Läs mer

Om den här e-boken

as well as by the list of open problems in the final section of this monograph. The computational power of rational homotopy theory is due to the discovery by Quillen [135] and by Sullivan [144] of an explicit algebraic formulation. In each case the rational homotopy type of a topological space is the same as the isomorphism class of its algebraic model and the rational homotopy type of a continuous map is the same as the algebraic homotopy class of the correspond ing morphism between models. These models make the rational homology and homotopy of a space transparent. They also (in principle, always, and in prac tice, sometimes) enable the calculation of other homotopy invariants such as the cup product in cohomology, the Whitehead product in homotopy and rational Lusternik-Schnirelmann category. In its initial phase research in rational homotopy theory focused on the identi of these models. These included fication of rational homotopy invariants in terms the homotopy Lie algebra (the translation of the Whitehead product to the homo topy groups of the loop space OX under the isomorphism 11'+1 (X) ~ 1I.(OX», LS category and cone length. Since then, however, work has concentrated on the properties of these in variants, and has uncovered some truly remarkable, and previously unsuspected phenomena. For example • If X is an n-dimensional simply connected finite CW complex, then either its rational homotopy groups vanish in degrees 2': 2n, or else they grow exponentially.

Betygsätt e-boken

Berätta vad du tycker.

Läsinformation

Smartphones och surfplattor
Installera appen Google Play Böcker för Android och iPad/iPhone. Appen synkroniseras automatiskt med ditt konto så att du kan läsa online eller offline var du än befinner dig.
Laptops och stationära datorer
Du kan lyssna på ljudböcker som du har köpt på Google Play via webbläsaren på datorn.
Läsplattor och andra enheter
Om du vill läsa boken på enheter med e-bläck, till exempel Kobo-läsplattor, måste du ladda ned en fil och överföra den till enheten. Följ anvisningarna i hjälpcentret om du vill överföra filerna till en kompatibel läsplatta.