Random Fields and Geometry

·
· Springer Science & Business Media
ebook
454
Σελίδες
Οι αξιολογήσεις και οι κριτικές δεν επαληθεύονται  Μάθετε περισσότερα

Σχετικά με το ebook

Since the term “random ?eld’’ has a variety of different connotations, ranging from agriculture to statistical mechanics, let us start by clarifying that, in this book, a random ?eld is a stochastic process, usually taking values in a Euclidean space, and de?ned over a parameter space of dimensionality at least 1. Consequently, random processes de?ned on countable parameter spaces will not 1 appear here. Indeed, even processes on R will make only rare appearances and, from the point of view of this book, are almost trivial. The parameter spaces we like best are manifolds, although for much of the time we shall require no more than that they be pseudometric spaces. With this clari?cation in hand, the next thing that you should know is that this book will have a sequel dealing primarily with applications. In fact, as we complete this book, we have already started, together with KW (Keith Worsley), on a companion volume [8] tentatively entitled RFG-A,or Random Fields and Geometry: Applications. The current volume—RFG—concentrates on the theory and mathematical background of random ?elds, while RFG-A is intended to do precisely what its title promises. Once the companion volume is published, you will ?nd there not only applications of the theory of this book, but of (smooth) random ?elds in general.

Αξιολογήστε αυτό το ebook

Πείτε μας τη γνώμη σας.

Πληροφορίες ανάγνωσης

Smartphone και tablet
Εγκαταστήστε την εφαρμογή Βιβλία Google Play για Android και iPad/iPhone. Συγχρονίζεται αυτόματα με τον λογαριασμό σας και σας επιτρέπει να διαβάζετε στο διαδίκτυο ή εκτός σύνδεσης, όπου κι αν βρίσκεστε.
Φορητοί και επιτραπέζιοι υπολογιστές
Μπορείτε να ακούσετε ηχητικά βιβλία τα οποία αγοράσατε στο Google Play, χρησιμοποιώντας το πρόγραμμα περιήγησης στον ιστό του υπολογιστή σας.
eReader και άλλες συσκευές
Για να διαβάσετε περιεχόμενο σε συσκευές e-ink, όπως είναι οι συσκευές Kobo eReader, θα χρειαστεί να κατεβάσετε ένα αρχείο και να το μεταφέρετε στη συσκευή σας. Ακολουθήστε τις αναλυτικές οδηγίες του Κέντρου βοήθειας για να μεταφέρετε αρχεία σε υποστηριζόμενα eReader.