Ramsey Methods in Analysis

·
· Springer Science & Business Media
Электрондук китеп
257
Барактар
Рейтинг жана сын-пикирлер текшерилген жок  Кеңири маалымат

Учкай маалымат

This book contains two sets of notes prepared for the Advanced Course on R- sey Methods in Analysis given at the Centre de Recerca Matem` atica in January 2004, as part of its year-long research programme on Set Theory and its Appli- tions. The common goal of the two sets of notes is to help young mathematicians enter a very active area of research lying on the borderline between analysis and combinatorics. The solution of the distortion problem for the Hilbert space, the unconditional basic sequence problem for Banach spaces, and the Banach ho- geneous space problem are samples of the most important recent advances in this area, and our two sets of notes will give some account of this. But our main goal was to try to expose the general principles and methods that lie hidden behind and are most likely useful for further developments. The goal of the ?rst set of notes is to describe a general method of building norms with desired properties, a method that is clearly relevant when testing any sort of intuition about the in?nite-dimensional geometry of Banach spaces. The goal of the second set of notes is to expose Ramsey-theoretic methods relevant for describing the rough structure present in this sort of geometry. We would like to thank the coordinator of the Advanced Course, Joan Ba- ria, and the director of the CRM, Manuel Castellet, for giving us this challenging but rewarding opportunity. Part A SaturatedandConditional StructuresinBanachSpaces SpirosA.

Бул электрондук китепти баалаңыз

Оюңуз менен бөлүшүп коюңуз.

Окуу маалыматы

Смартфондор жана планшеттер
Android жана iPad/iPhone үчүн Google Play Китептер колдонмосун орнотуңуз. Ал автоматтык түрдө аккаунтуңуз менен шайкештелип, кайда болбоңуз, онлайнда же оффлайнда окуу мүмкүнчүлүгүн берет.
Ноутбуктар жана компьютерлер
Google Play'ден сатылып алынган аудиокитептерди компьютериңиздин веб браузеринен уга аласыз.
eReaders жана башка түзмөктөр
Kobo eReaders сыяктуу электрондук сыя түзмөктөрүнөн окуу үчүн, файлды жүктөп алып, аны түзмөгүңүзгө өткөрүшүңүз керек. Файлдарды колдоого алынган eReaders'ке өткөрүү үчүн Жардам борборунун нускамаларын аткарыңыз.