Quasi-Least Squares Regression

·
· CRC Press
E-knjiga
221
Stranica
Ispunjava uslove
Ocene i recenzije nisu verifikovane  Saznajte više

O ovoj e-knjizi

Drawing on the authors' substantial expertise in modeling longitudinal and clustered data, Quasi-Least Squares Regression provides a thorough treatment of quasi-least squares (QLS) regression-a computational approach for the estimation of correlation parameters within the framework of generalized estimating equations (GEEs). The authors present a d

O autoru

Justine Shults is an associate professor and co-director of the Pediatrics Section in the Division of Biostatistics in the Perelman School of Medicine at the University of Pennsylvania, where she is the principal investigator of the biostatistics training grant in renal and urologic diseases. She is the Statistical Editor of the Journal of the Pediatric Infectious Disease Society and the Statistical Section Editor of Springer Plus. Professor Shults (with N. Rao Chaganty) developed Quasi-Least Squares (QLS) and was funded by the National Science Foundation and the National Institutes of Health to extend QLS and develop user-friendly software for implementing her new methodology. She has authored or co-authored over 100 peer-reviewed publications, including the initial papers on QLS for unbalanced and unequally spaced longitudinal data and on MARK1ML and the choice of working correlation structure for GEE.

Joseph M. Hilbe is a Solar System Ambassador with the Jet Propulsion Laboratory, an adjunct professor of statistics at Arizona State University, and an Emeritus Professor at the University of Hawaii. An elected fellow of the American Statistical Association and an elected member of the International Statistical Institute (ISI), Professor Hilbe is president of the International Astrostatistics Association as well as chair of the ISI Sports Statistics and Astrostatistics committees. He has authored two editions of the bestseller Negative Binomial Regression, Logistic Regression Models, and Astrostatistical Challenges for the New Astronomy. He also co-authored Methods of Statistical Model Estimation (with A. Robinson), Generalized Estimating Equations, Second Edition (with J. Hardin), and R for Stata Users (with R. Muenchen), as well as 17 encyclopedia articles and book chapters in the past five years.

Ocenite ovu e-knjigu

Javite nam svoje mišljenje.

Informacije o čitanju

Pametni telefoni i tableti
Instalirajte aplikaciju Google Play knjige za Android i iPad/iPhone. Automatski se sinhronizuje sa nalogom i omogućava vam da čitate onlajn i oflajn gde god da se nalazite.
Laptopovi i računari
Možete da slušate audio-knjige kupljene na Google Play-u pomoću veb-pregledača na računaru.
E-čitači i drugi uređaji
Da biste čitali na uređajima koje koriste e-mastilo, kao što su Kobo e-čitači, treba da preuzmete fajl i prenesete ga na uređaj. Pratite detaljna uputstva iz centra za pomoć da biste preneli fajlove u podržane e-čitače.