Quantum Theories and Geometry

·
· Mathematical Physics Studies 10 knyga · Springer Science & Business Media
El. knyga
191
Puslapiai
Įvertinimai ir apžvalgos nepatvirtinti. Sužinokite daugiau

Apie šią el. knygą

This book presents the text of most of the lectures which were de livered at the Meeting Quantum Theories and Geometry which was held at the Fondation Les Treilles from March 23 to March 27, 1987. The general aim of this meeting was to bring together mathemati cians and physicists who have worked in this growing field of contact between the two disciplines, namely this region where geometry and physics interact creatively in both directions. It 1S the strong belief of the organizers that these written con tributions will be a useful document for research people workin~ 1n geometry or physics. Three lectures were devoted to the deformation approach to quantum mechanics which involves a modification of both the associative and the Lie structure of the algebra of functions on classical phase space. A. Lichnerowicz shows how one can view classical and quantum statistical mechanics in terms of a deformation with a parameter inversely propor tional to temperature. S. Gutt reviews the physical background of star products and indicates their applications in Lie groups representa tion theory and in harmonic analysis. D. Arnal gives a rigorous theory Vll viii PREFACI of the star exponential in the case of the Heisenberg group and shows how this can be extended to arbitrary nilpotent groups.

Įvertinti šią el. knygą

Pasidalykite savo nuomone.

Skaitymo informacija

Išmanieji telefonai ir planšetiniai kompiuteriai
Įdiekite „Google Play“ knygų programą, skirtą „Android“ ir „iPad“ / „iPhone“. Ji automatiškai susinchronizuojama su paskyra ir jūs galite skaityti tiek prisijungę, tiek neprisijungę, kad ir kur būtumėte.
Nešiojamieji ir staliniai kompiuteriai
Galite klausyti garsinių knygų, įsigytų sistemoje „Google Play“ naudojant kompiuterio žiniatinklio naršyklę.
El. knygų skaitytuvai ir kiti įrenginiai
Jei norite skaityti el. skaitytuvuose, pvz., „Kobo eReader“, turite atsisiųsti failą ir perkelti jį į įrenginį. Kad perkeltumėte failus į palaikomus el. skaitytuvus, vadovaukitės išsamiomis pagalbos centro instrukcijomis.