Quantum Stochastic Processes and Noncommutative Geometry

· Cambridge Tracts in Mathematics 169. kniha · Cambridge University Press
E‑kniha
301
Počet strán
Hodnotenia a recenzie nie sú overené  Ďalšie informácie

Táto e‑kniha

The classical theory of stochastic processes has important applications arising from the need to describe irreversible evolutions in classical mechanics; analogously quantum stochastic processes can be used to model the dynamics of irreversible quantum systems. Noncommutative, i.e. quantum, geometry provides a framework in which quantum stochastic structures can be explored. This book is the first to describe how these two mathematical constructions are related. In particular, key ideas of semigroups and complete positivity are combined to yield quantum dynamical semigroups (QDS). Sinha and Goswami also develop a general theory of Evans-Hudson dilation for both bounded and unbounded coefficients. The unique features of the book, including the interaction of QDS and quantum stochastic calculus with noncommutative geometry and a thorough discussion of this calculus with unbounded coefficients, will make it of interest to graduate students and researchers in functional analysis, probability and mathematical physics.

O autorovi

Kalyan Sinha is a Distinguished Scientist in the Statistics-Mathematics Unit at the Indian Statistical Institute, New Dehli.

Debashish Goswami is an Assistant Professor in the Statistics-Mathematics Unit at the Indian Statistical Institute, Kolkata.

Ohodnoťte túto elektronickú knihu

Povedzte nám svoj názor.

Informácie o dostupnosti

Smartfóny a tablety
Nainštalujte si aplikáciu Knihy Google Play pre AndroidiPad/iPhone. Automaticky sa synchronizuje s vaším účtom a umožňuje čítať online aj offline, nech už ste kdekoľvek.
Laptopy a počítače
Audioknihy zakúpené v službe Google Play môžete počúvať prostredníctvom webového prehliadača v počítači.
Čítačky elektronických kníh a ďalšie zariadenia
Ak chcete tento obsah čítať v zariadeniach využívajúcich elektronický atrament, ako sú čítačky e‑kníh Kobo, musíte stiahnuť príslušný súbor a preniesť ho do svojho zariadenia. Pri prenose súborov do podporovaných čítačiek e‑kníh postupujte podľa podrobných pokynov v centre pomoci.