Pyramidal Architectures for Computer Vision

Β·
Β· Springer Science & Business Media
ЭлСктронная ΠΊΠ½ΠΈΠ³Π°
335
ΠšΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²ΠΎ страниц
ΠžΡ†Π΅Π½ΠΊΠΈ ΠΈ ΠΎΡ‚Π·Ρ‹Π²Ρ‹ Π½Π΅ ΠΏΡ€ΠΎΠ²Π΅Ρ€Π΅Π½Ρ‹. ΠŸΠΎΠ΄Ρ€ΠΎΠ±Π½Π΅Π΅β€¦

Об элСктронной ΠΊΠ½ΠΈΠ³Π΅

Computer vision deals with the problem of manipulating information contained in large quantities of sensory data, where raw data emerge from the transducing 6 7 sensors at rates between 10 to 10 pixels per second. Conventional general purpose computers are unable to achieve the computation rates required to op erate in real time or even in near real time, so massively parallel systems have been used since their conception in this important practical application area. The development of massively parallel computers was initially character ized by efforts to reach a speedup factor equal to the number of processing elements (linear scaling assumption). This behavior pattern can nearly be achieved only when there is a perfect match between the computational struc ture or data structure and the system architecture. The theory of hierarchical modular systems (HMSs) has shown that even a small number of hierarchical levels can sizably increase the effectiveness of very large systems. In fact, in the last decade several hierarchical architectures that support capabilities which can overcome performances gained with the assumption of linear scaling have been proposed. Of these architectures, the most commonly considered in com puter vision is the one based on a very large number of processing elements (PEs) embedded in a pyramidal structure. Pyramidal architectures supply the same image at different resolution lev els, thus ensuring the use of the most appropriate resolution for the operation, task, and image at hand.

ΠžΡ†Π΅Π½ΠΈΡ‚Π΅ ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΡƒΡŽ ΠΊΠ½ΠΈΠ³Ρƒ

ΠŸΠΎΠ΄Π΅Π»ΠΈΡ‚Π΅ΡΡŒ с Π½Π°ΠΌΠΈ своим ΠΌΠ½Π΅Π½ΠΈΠ΅ΠΌ.

Π“Π΄Π΅ Ρ‡ΠΈΡ‚Π°Ρ‚ΡŒ ΠΊΠ½ΠΈΠ³ΠΈ

Π‘ΠΌΠ°Ρ€Ρ‚Ρ„ΠΎΠ½Ρ‹ ΠΈ ΠΏΠ»Π°Π½ΡˆΠ΅Ρ‚Ρ‹
УстановитС ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Google Play Книги для Android ΠΈΠ»ΠΈ iPad/iPhone. Оно синхронизируСтся с вашим Π°ΠΊΠΊΠ°ΡƒΠ½Ρ‚ΠΎΠΌ автоматичСски, ΠΈ Π²Ρ‹ смоТСтС Ρ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π»ΡŽΠ±ΠΈΠΌΡ‹Π΅ ΠΊΠ½ΠΈΠ³ΠΈ ΠΎΠ½Π»Π°ΠΉΠ½ ΠΈ ΠΎΡ„Π»Π°ΠΉΠ½ Π³Π΄Π΅ ΡƒΠ³ΠΎΠ΄Π½ΠΎ.
Ноутбуки ΠΈ Π½Π°ΡΡ‚ΠΎΠ»ΡŒΠ½Ρ‹Π΅ ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Ρ‹
Π‘Π»ΡƒΡˆΠ°ΠΉΡ‚Π΅ Π°ΡƒΠ΄ΠΈΠΎΠΊΠ½ΠΈΠ³ΠΈ ΠΈΠ· Google Play Π² Π²Π΅Π±-Π±Ρ€Π°ΡƒΠ·Π΅Ρ€Π΅ Π½Π° ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π΅.
Устройства для чтСния ΠΊΠ½ΠΈΠ³
Π§Ρ‚ΠΎΠ±Ρ‹ ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΡŒ ΠΊΠ½ΠΈΠ³Ρƒ Π½Π° Ρ‚Π°ΠΊΠΎΠΌ устройствС для чтСния, ΠΊΠ°ΠΊ Kobo, скачайтС Ρ„Π°ΠΉΠ» ΠΈ Π΄ΠΎΠ±Π°Π²ΡŒΡ‚Π΅ Π΅Π³ΠΎ Π½Π° устройство. ΠŸΠΎΠ΄Ρ€ΠΎΠ±Π½Ρ‹Π΅ инструкции ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ Π² Π‘ΠΏΡ€Π°Π²ΠΎΡ‡Π½ΠΎΠΌ Ρ†Π΅Π½Ρ‚Ρ€Π΅.