In the two-volume Heterogeneous Nanocatalysis for Energy and Environmental Sustainability, a team of distinguished researchers deliver a comprehensive discussion of fundamental concepts in, and practical applications of, heterogeneous nanocatalysis for alternative energy production, biomass conversion, solar energy, green fuels, H2 production, fuel cells, electrochemical energy conversion processes, CO2 conversion, clean water, and environmental protection.
The volumes cover the design and catalytic performance of various nanocatalysts, including nanosized metals and metal oxides, supported metal nanoparticles, inverse oxide-metal nanocatalysts, core-shell nanocatalysts, nanoporous zeolites, nanocarbon composites, and metal oxides in confined spaces. Each chapter contains a critical discussion of the opportunities and challenges posed by the use of nanosized catalysts for practical applications.
Volume 1 – Energy Applications focuses on the conversion of renewable energy (biomass/solar) into green fuels and chemicals, ammonia synthesis, clean hydrogen production, and electrochemical energy conversion processes using a variety of nanosized catalysts.
It also offers:
Perfect for researchers, postgraduate students, chemists, and engineers interested in heterogeneous catalysis and nanocatalysis, Heterogeneous Nanocatalysis for Energy and Environmental Sustainability will also earn a place in the libraries of professionals working in alternative energy production, biomass conversion, solar energy, green fuels, H2 production, fuel cells, electrochemical energy conversion processes, CO2 conversion, clean water, and environmental protection.
Explore the environmental applications of heterogeneous nanocatalysis in the field of alternative energy production In Volume 2: Environmental Applications of Heterogeneous Nanocatalysis for Energy and Environmental Sustainability, a team of distinguished researchers discusses the foundational concepts and practical applications of heterogeneous nanocatalysis for alternative energy production. Volume 2 focuses on the purification of auto exhaust pollutants and volatile organic compounds, as well as CO2 conversion and wastewater treatment over a range of nano-sized catalysts.
Putla Sudarsanam, PhD, is an Assistant Professor at the Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
Yusuke Yamauchi, PhD, is a Professor in the School of Chemical Engineering and Senior Group Leader in the Australian Institute for Bioengineering and Nanotechnology (AIBN), at the University of Queensland in Australia.
Pankaj Bharali, PhD, is an Assistant Professor at the Department of Chemical Sciences, Tezpur University, India.