Projecting Statistical Functionals

· Lecture Notes in Statistics Kitap 160 · Springer Science & Business Media
E-kitap
175
Sayfa
Puanlar ve yorumlar doğrulanmaz Daha Fazla Bilgi

Bu e-kitap hakkında

About 10 years ago I began studying evaluations of distributions of or der statistics from samples with general dependence structure. Analyzing in [78] deterministic inequalities for arbitrary linear combinations of order statistics expressed in terms of sample moments, I observed that we obtain the optimal bounds once we replace the vectors of original coefficients of the linear combinations by the respective Euclidean norm projections onto the convex cone of vectors with nondecreasing coordinates. I further veri fied that various optimal evaluations of order and record statistics, derived earlier by use of diverse techniques, may be expressed by means of projec tions. In Gajek and Rychlik [32], we formulated for the first time an idea of applying projections onto convex cones for determining accurate moment bounds on the expectations of order statistics. Also for the first time, we presented such evaluations for non parametric families of distributions dif ferent from families of arbitrary, symmetric, and nonnegative distributions. We realized that this approach makes it possible to evaluate various func tionals of great importance in applied probability and statistics in different restricted families of distributions. The purpose of this monograph is to present the method of using pro jections of elements of functional Hilbert spaces onto convex cones for es tablishing optimal mean-variance bounds of statistical functionals, and its wide range of applications. This is intended for students, researchers, and practitioners in probability, statistics, and reliability.

Bu e-kitaba puan verin

Düşüncelerinizi bizimle paylaşın.

Okuma bilgileri

Akıllı telefonlar ve tabletler
Android ve iPad/iPhone için Google Play Kitaplar uygulamasını yükleyin. Bu uygulama, hesabınızla otomatik olarak senkronize olur ve nerede olursanız olun çevrimiçi veya çevrimdışı olarak okumanıza olanak sağlar.
Dizüstü bilgisayarlar ve masaüstü bilgisayarlar
Bilgisayarınızın web tarayıcısını kullanarak Google Play'de satın alınan sesli kitapları dinleyebilirsiniz.
e-Okuyucular ve diğer cihazlar
Kobo eReader gibi e-mürekkep cihazlarında okumak için dosyayı indirip cihazınıza aktarmanız gerekir. Dosyaları desteklenen e-kitap okuyuculara aktarmak için lütfen ayrıntılı Yardım Merkezi talimatlarını uygulayın.