Projecting Statistical Functionals

· Lecture Notes in Statistics 160. grāmata · Springer Science & Business Media
E-grāmata
175
Lappuses
Atsauksmes un vērtējumi nav pārbaudīti. Uzzināt vairāk

Par šo e-grāmatu

About 10 years ago I began studying evaluations of distributions of or der statistics from samples with general dependence structure. Analyzing in [78] deterministic inequalities for arbitrary linear combinations of order statistics expressed in terms of sample moments, I observed that we obtain the optimal bounds once we replace the vectors of original coefficients of the linear combinations by the respective Euclidean norm projections onto the convex cone of vectors with nondecreasing coordinates. I further veri fied that various optimal evaluations of order and record statistics, derived earlier by use of diverse techniques, may be expressed by means of projec tions. In Gajek and Rychlik [32], we formulated for the first time an idea of applying projections onto convex cones for determining accurate moment bounds on the expectations of order statistics. Also for the first time, we presented such evaluations for non parametric families of distributions dif ferent from families of arbitrary, symmetric, and nonnegative distributions. We realized that this approach makes it possible to evaluate various func tionals of great importance in applied probability and statistics in different restricted families of distributions. The purpose of this monograph is to present the method of using pro jections of elements of functional Hilbert spaces onto convex cones for es tablishing optimal mean-variance bounds of statistical functionals, and its wide range of applications. This is intended for students, researchers, and practitioners in probability, statistics, and reliability.

Novērtējiet šo e-grāmatu

Izsakiet savu viedokli!

Informācija lasīšanai

Viedtālruņi un planšetdatori
Instalējiet lietotni Google Play grāmatas Android ierīcēm un iPad planšetdatoriem/iPhone tālruņiem. Lietotne tiks automātiski sinhronizēta ar jūsu kontu un ļaus lasīt saturu tiešsaistē vai bezsaistē neatkarīgi no jūsu atrašanās vietas.
Klēpjdatori un galddatori
Varat klausīties pakalpojumā Google Play iegādātās audiogrāmatas, izmantojot datora tīmekļa pārlūkprogrammu.
E-lasītāji un citas ierīces
Lai lasītu grāmatas tādās elektroniskās tintes ierīcēs kā Kobo e-lasītāji, nepieciešams lejupielādēt failu un pārsūtīt to uz savu ierīci. Izpildiet palīdzības centrā sniegtos detalizētos norādījumus, lai pārsūtītu failus uz atbalstītiem e-lasītājiem.