Progress in Inverse Spectral Geometry

ยท
ยท Birkhรคuser
4.0
๋ฆฌ๋ทฐ 2๊ฐœ
eBook
197
ํŽ˜์ด์ง€
๊ฒ€์ฆ๋˜์ง€ ์•Š์€ ํ‰์ ๊ณผ ๋ฆฌ๋ทฐ์ž…๋‹ˆ๋‹ค. ย ์ž์„ธํžˆ ์•Œ์•„๋ณด๊ธฐ

eBook ์ •๋ณด

Most polynomial growth on every half-space Re (z) ::::: c. Moreover, Op(t) depends holomorphically on t for Re t> O. General references for much of the material on the derivation of spectral functions, asymptotic expansions and analytic properties of spectral functions are [A-P-S] and [Sh], especially Chapter 2. To study the spectral functions and their relation to the geometry and topology of X, one could, for example, take the natural associated parabolic problem as a starting point. That is, consider the 'heat equation': (%t + p) u(x, t) = 0 { u(x, O) = Uo(x), tP which is solved by means of the (heat) semi group V(t) = e- ; namely, u(ยท, t) = V(t)uoUยท Assuming that V(t) is of trace class (which is guaranteed, for instance, if P has a positive principal symbol), it has a Schwartz kernel K E COO(X x X x Rt, E* ยฎE), locally given by 00 K(x, y; t) = L>-IAk(~k ยฎ 'Pk)(X, y), k=O for a complete set of orthonormal eigensections 'Pk E COO(E). Taking the trace, we then obtain: 00 tA Op(t) = trace(V(t)) = 2::>- k. k=O Now, using, e. g., the Dunford calculus formula (where C is a suitable curve around a(P)) as a starting point and the standard for malism of pseudodifferential operators, one easily derives asymptotic expansions for the spectral functions, in this case for Op.

ํ‰์  ๋ฐ ๋ฆฌ๋ทฐ

4.0
๋ฆฌ๋ทฐ 2๊ฐœ

์ด eBook ํ‰๊ฐ€

์˜๊ฒฌ์„ ์•Œ๋ ค์ฃผ์„ธ์š”.

์ฝ๊ธฐ ์ •๋ณด

์Šค๋งˆํŠธํฐ ๋ฐ ํƒœ๋ธ”๋ฆฟ
Android ๋ฐ iPad/iPhone์šฉ Google Play ๋ถ ์•ฑ์„ ์„ค์น˜ํ•˜์„ธ์š”. ๊ณ„์ •๊ณผ ์ž๋™์œผ๋กœ ๋™๊ธฐํ™”๋˜์–ด ์–ด๋””์„œ๋‚˜ ์˜จ๋ผ์ธ ๋˜๋Š” ์˜คํ”„๋ผ์ธ์œผ๋กœ ์ฑ…์„ ์ฝ์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
๋…ธํŠธ๋ถ ๋ฐ ์ปดํ“จํ„ฐ
์ปดํ“จํ„ฐ์˜ ์›น๋ธŒ๋ผ์šฐ์ €๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ Google Play์—์„œ ๊ตฌ๋งคํ•œ ์˜ค๋””์˜ค๋ถ์„ ๋“ค์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
eReader ๋ฐ ๊ธฐํƒ€ ๊ธฐ๊ธฐ
Kobo eReader ๋“ฑ์˜ eBook ๋ฆฌ๋”๊ธฐ์—์„œ ์ฝ์œผ๋ ค๋ฉด ํŒŒ์ผ์„ ๋‹ค์šด๋กœ๋“œํ•˜์—ฌ ๊ธฐ๊ธฐ๋กœ ์ „์†กํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ์ง€์›๋˜๋Š” eBook ๋ฆฌ๋”๊ธฐ๋กœ ํŒŒ์ผ์„ ์ „์†กํ•˜๋ ค๋ฉด ๊ณ ๊ฐ์„ผํ„ฐ์—์„œ ์ž์„ธํ•œ ์•ˆ๋‚ด๋ฅผ ๋”ฐ๋ฅด์„ธ์š”.