Probability Theory

· Courant Lecture Notes 第 7 冊 · American Mathematical Soc.
電子書
167
頁數
評分和評論未經驗證 瞭解詳情

關於這本電子書

This volume presents topics in probability theory covered during a first-year graduate course given at the Courant Institute of Mathematical Sciences. The necessary background material in measure theory is developed, including the standard topics, such as extension theorem, construction of measures, integration, product spaces, Radon-Nikodym theorem, and conditional expectation. In the first part of the book, characteristic functions are introduced, followed by the study of weak convergence of probability distributions. Then both the weak and strong limit theorems for sums of independent random variables are proved, including the weak and strong laws of large numbers, central limit theorems, laws of the iterated logarithm, and the Kolmogorov three series theorem. The first part concludes with infinitely divisible distributions and limit theorems for sums of uniformly infinitesimal independent random variables. The second part of the book mainly deals with dependent random variables, particularly martingales and Markov chains. Topics include standard results regarding discrete parameter martingales and Doob's inequalities. The standard topics in Markov chains are treated, i.e., transience, and null and positive recurrence. A varied collection of examples is given to demonstrate the connection between martingales and Markov chains. Additional topics covered in the book include stationary Gaussian processes, ergodic theorems, dynamic programming, optimal stopping, and filtering. A large number of examples and exercises is included. The book is a suitable text for a first-year graduate course in probability.

為這本電子書評分

請分享你的寶貴意見。

閱讀資訊

智能手機和平板電腦
請安裝 Android 版iPad/iPhone 版「Google Play 圖書」應用程式。這個應用程式會自動與你的帳戶保持同步,讓你隨時隨地上網或離線閱讀。
手提電腦和電腦
你可以使用電腦的網絡瀏覽器聆聽在 Google Play 上購買的有聲書。
電子書閱讀器及其他裝置
如要在 Kobo 等電子墨水裝置上閱覽書籍,你需要下載檔案並傳輸到你的裝置。請按照說明中心的詳細指示,將檔案傳輸到支援的電子書閱讀器。