Probability Measures on Metric Spaces

ยท Academic Press
แžŸแŸ€แžœแž—แŸ…โ€‹แžขแŸแžกแžทแž…แžแŸ’แžšแžผแž“แžทแž…
288
แž‘แŸ†แž–แŸแžš
แž˜แžถแž“แžŸแžทแž‘แŸ’แž’แžท
แž€แžถแžšแžœแžถแž™แžแž˜แŸ’แž›แŸƒ แž“แžทแž„แž˜แžแžทแžœแžถแž™แžแž˜แŸ’แž›แŸƒแž˜แžทแž“แžแŸ’แžšแžผแžœแž”แžถแž“แž•แŸ’แž‘แŸ€แž„แž•แŸ’แž‘แžถแžแŸ‹แž‘แŸ แžŸแŸ’แžœแŸ‚แž„แž™แž›แŸ‹แž”แž“แŸ’แžแŸ‚แž˜

แžขแŸ†แž–แžธแžŸแŸ€แžœแž—แŸ…โ€‹แžขแŸแžกแžทแž…แžแŸ’แžšแžผแž“แžทแž€แž“แŸแŸ‡

Probability Measures on Metric Spaces presents the general theory of probability measures in abstract metric spaces. This book deals with complete separable metric groups, locally impact abelian groups, Hilbert spaces, and the spaces of continuous functions. Organized into seven chapters, this book begins with an overview of isomorphism theorem, which states that two Borel subsets of complete separable metric spaces are isomorphic if and only if they have the same cardinality. This text then deals with properties such as tightness, regularity, and perfectness of measures defined on metric spaces. Other chapters consider the arithmetic of probability distributions in topological groups. This book discusses as well the proofs of the classical extension theorems and existence of conditional and regular conditional probabilities in standard Borel spaces. The final chapter deals with the compactness criteria for sets of probability measures and their applications to testing statistical hypotheses. This book is a valuable resource for statisticians.

แžœแžถแž™แžแž˜แŸ’แž›แŸƒแžŸแŸ€แžœแž—แŸ…โ€‹แžขแŸแžกแžทแž…แžแŸ’แžšแžผแž“แžทแž€แž“แŸแŸ‡

แž”แŸ’แžšแžถแž”แŸ‹แž™แžพแž„แžขแŸ†แž–แžธแž€แžถแžšแž™แž›แŸ‹แžƒแžพแž‰แžšแž”แžŸแŸ‹แžขแŸ’แž“แž€แŸ”

แžขแžถแž“โ€‹แž–แŸแžแŸŒแž˜แžถแž“

แž‘แžผแžšแžŸแž–แŸ’แž‘แž†แŸ’แž›แžถแžแžœแŸƒ แž“แžทแž„โ€‹แžแŸแž”แŸ’แž›แŸแž
แžŠแŸ†แžกแžพแž„แž€แž˜แŸ’แž˜แžœแžทแž’แžธ Google Play Books แžŸแž˜แŸ’แžšแžถแž”แŸ‹ Android แž“แžทแž„ iPad/iPhone แŸ” แžœแžถโ€‹แž’แŸ’แžœแžพแžŸแž˜แž€แžถแž›แž€แž˜แŸ’แž˜โ€‹แžŠแŸ„แž™แžŸแŸ’แžœแŸแž™แž”แŸ’แžšแžœแžแŸ’แžแžทแž‡แžถแž˜แžฝแž™โ€‹แž‚แžŽแž“แžธโ€‹แžšแž”แžŸแŸ‹แžขแŸ’แž“แž€โ€‹ แž“แžทแž„โ€‹แžขแž“แžปแž‰แŸ’แž‰แžถแžแžฑแŸ’แž™โ€‹แžขแŸ’แž“แž€แžขแžถแž“แž–แŸแž›โ€‹แž˜แžถแž“แžขแŸŠแžธแž“แž’แžบแžŽแžทแž แžฌแž‚แŸ’แž˜แžถแž“โ€‹แžขแŸŠแžธแž“แž’แžบแžŽแžทแžโ€‹แž“แŸ…แž‚แŸ’แžšแž”แŸ‹แž‘แžธแž€แž“แŸ’แž›แŸ‚แž„แŸ”
แž€แžปแŸ†แž–แŸ’แž™แžผแž‘แŸแžšโ€‹แž™แžฝแžšแžŠแŸƒ แž“แžทแž„แž€แžปแŸ†แž–แŸ’แž™แžผแž‘แŸแžš
แžขแŸ’แž“แž€แžขแžถแž…แžŸแŸ’แžŠแžถแž”แŸ‹แžŸแŸ€แžœแž—แŸ…แž‡แžถแžŸแŸ†แžกแŸแž„แžŠแŸ‚แž›แž”แžถแž“แž‘แžทแž‰แž“แŸ…แž€แŸ’แž“แžปแž„ Google Play แžŠแŸ„แž™แž”แŸ’แžšแžพแž€แž˜แŸ’แž˜แžœแžทแž’แžธแžšแžปแž€แžšแž€แžแžถแž˜แžขแŸŠแžธแž“แž’แžบแžŽแžทแžแž€แŸ’แž“แžปแž„แž€แžปแŸ†แž–แŸ’แž™แžผแž‘แŸแžšแžšแž”แžŸแŸ‹แžขแŸ’แž“แž€แŸ”
eReaders แž“แžทแž„โ€‹แžงแž”แž€แžšแžŽแŸโ€‹แž•แŸ’แžŸแŸแž„โ€‹แž‘แŸ€แž
แžŠแžพแž˜แŸ’แž”แžธแžขแžถแž“แž“แŸ…แž›แžพโ€‹แžงแž”แž€แžšแžŽแŸ e-ink แžŠแžผแž…แž‡แžถโ€‹แžงแž”แž€แžšแžŽแŸแžขแžถแž“โ€‹แžŸแŸ€แžœแž—แŸ…แžขแŸแžกแžทแž…แžแŸ’แžšแžผแž“แžทแž€ Kobo แžขแŸ’แž“แž€แž“แžนแž„แžแŸ’แžšแžผแžœโ€‹แž‘แžถแž‰แž™แž€โ€‹แžฏแž€แžŸแžถแžš แž แžพแž™โ€‹แž•แŸ’แž‘แŸแžšแžœแžถแž‘แŸ…โ€‹แžงแž”แž€แžšแžŽแŸโ€‹แžšแž”แžŸแŸ‹แžขแŸ’แž“แž€แŸ” แžŸแžผแž˜แžขแž“แžปแžœแžแŸ’แžแžแžถแž˜โ€‹แž€แžถแžšแžŽแŸ‚แž“แžถแŸ†แž›แž˜แŸ’แžขแžทแžแžšแž”แžŸแŸ‹แž˜แž‡แŸ’แžˆแž˜แžŽแŸ’แžŒแž›แž‡แŸ†แž“แžฝแž™ แžŠแžพแž˜แŸ’แž”แžธแž•แŸ’แž‘แŸแžšแžฏแž€แžŸแžถแžšโ€‹แž‘แŸ…แžงแž”แž€แžšแžŽแŸแžขแžถแž“แžŸแŸ€แžœแž—แŸ…โ€‹แžขแŸแžกแžทแž…แžแŸ’แžšแžผแž“แžทแž€แžŠแŸ‚แž›แžŸแŸ’แž‚แžถแž›แŸ‹แŸ”