Principles of Optimal Control Theory

· Mathematical Concepts and Methods in Science and Engineering Buku 7 · Springer Science & Business Media
eBook
175
Halaman
Rating dan ulasan tidak diverifikasi  Pelajari Lebih Lanjut

Tentang eBook ini

In the late 1950's, the group of Soviet mathematicians consisting of L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko made fundamental contributions to optimal control theory. Much of their work was collected in their monograph, The Mathematical Theory of Optimal Processes. Subsequently, Professor Gamkrelidze made further important contributions to the theory of necessary conditions for problems of optimal control and general optimization problems. In the present monograph, Professor Gamkrelidze presents his current view of the fundamentals of optimal control theory. It is intended for use in a one-semester graduate course or advanced undergraduate course. We are now making these ideas available in English to all those interested in optimal control theory. West Lafayette, Indiana, USA Leonard D. Berkovitz Translation Editor Vll Preface This book is based on lectures I gave at the Tbilisi State University during the fall of 1974. It contains, in essence, the principles of general control theory and proofs of the maximum principle and basic existence theorems of optimal control theory. Although the proofs of the basic theorems presented here are far from being the shortest, I think they are fully justified from the conceptual view point. In any case, the notions we introduce and the methods developed have one unquestionable advantage -they are constantly used throughout control theory, and not only for the proofs of the theorems presented in this book.

Beri rating eBook ini

Sampaikan pendapat Anda.

Informasi bacaan

Smartphone dan tablet
Instal aplikasi Google Play Buku untuk Android dan iPad/iPhone. Aplikasi akan disinkronkan secara otomatis dengan akun Anda dan dapat diakses secara online maupun offline di mana saja.
Laptop dan komputer
Anda dapat mendengarkan buku audio yang dibeli di Google Play menggunakan browser web komputer.
eReader dan perangkat lainnya
Untuk membaca di perangkat e-ink seperti Kobo eReaders, Anda perlu mendownload file dan mentransfernya ke perangkat Anda. Ikuti petunjuk Pusat bantuan yang mendetail untuk mentransfer file ke eReaders yang didukung.