Principles of Optimal Control Theory

· Mathematical Concepts and Methods in Science and Engineering Book 7 · Springer Science & Business Media
Ebook
175
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

In the late 1950's, the group of Soviet mathematicians consisting of L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko made fundamental contributions to optimal control theory. Much of their work was collected in their monograph, The Mathematical Theory of Optimal Processes. Subsequently, Professor Gamkrelidze made further important contributions to the theory of necessary conditions for problems of optimal control and general optimization problems. In the present monograph, Professor Gamkrelidze presents his current view of the fundamentals of optimal control theory. It is intended for use in a one-semester graduate course or advanced undergraduate course. We are now making these ideas available in English to all those interested in optimal control theory. West Lafayette, Indiana, USA Leonard D. Berkovitz Translation Editor Vll Preface This book is based on lectures I gave at the Tbilisi State University during the fall of 1974. It contains, in essence, the principles of general control theory and proofs of the maximum principle and basic existence theorems of optimal control theory. Although the proofs of the basic theorems presented here are far from being the shortest, I think they are fully justified from the conceptual view point. In any case, the notions we introduce and the methods developed have one unquestionable advantage -they are constantly used throughout control theory, and not only for the proofs of the theorems presented in this book.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.