Predictive Econometrics and Big Data

¡ ¡
¡ Springer
ā§Ē.ā§Ļ
⧍ āϟāĻž āĻĒā§°ā§āϝāĻžāϞ⧋āϚāύāĻž
āχāĻŦ⧁āĻ•
780
āĻĒ⧃āĻˇā§āĻ āĻž
āĻŽā§‚āĻ˛ā§āϝāĻžāĻ‚āĻ•āύ āφ⧰⧁ āĻĒā§°ā§āϝāĻžāϞ⧋āϚāύāĻž āϏāĻ¤ā§āϝāĻžāĻĒāύ āϕ⧰āĻž āĻšā§‹ā§ąāĻž āύāĻžāχ  āĻ…āϧāĻŋāĻ• āϜāĻžāύāĻ•

āĻāχ āχāĻŦ⧁āĻ•āĻ–āύ⧰ āĻŦāĻŋāĻˇā§Ÿā§‡

This book presents recent research on predictive econometrics and big data. Gathering edited papers presented at the 11th International Conference of the Thailand Econometric Society (TES2018), held in Chiang Mai, Thailand, on January 10-12, 2018, its main focus is on predictive techniques – which directly aim at predicting economic phenomena; and big data techniques – which enable us to handle the enormous amounts of data generated by modern computers in a reasonable time. The book also discusses the applications of more traditional statistical techniques to econometric problems.

Econometrics is a branch of economics that employs mathematical (especially statistical) methods to analyze economic systems, to forecast economic and financial dynamics, and to develop strategies for achieving desirable economic performance. It is therefore important to develop data processing techniques that explicitly focus on prediction. The more data we have, the better our predictions will be. As such, these techniques are essential to our ability to process huge amounts of available data.

āĻŽā§‚āĻ˛ā§āϝāĻžāĻ‚āĻ•āύ āφ⧰⧁ āĻĒā§°ā§āϝāĻžāϞ⧋āϚāύāĻžāϏāĻŽā§‚āĻš

ā§Ē.ā§Ļ
⧍ āϟāĻž āĻĒā§°ā§āϝāĻžāϞ⧋āϚāύāĻž

āĻāχ āχāĻŦ⧁āĻ•āĻ–āύāĻ• āĻŽā§‚āĻ˛ā§āϝāĻžāĻ‚āĻ•āύ āϕ⧰āĻ•

āφāĻŽāĻžāĻ• āφāĻĒā§‹āύāĻžā§° āĻŽāϤāĻžāĻŽāϤ āϜāύāĻžāĻ“āĻ•āĨ¤

āĻĒāĻĸāĻŧāĻžā§° āύāĻŋāĻ°ā§āĻĻ⧇āĻļāĻžā§ąāϞ⧀

āĻ¸ā§āĻŽāĻžā§°ā§āϟāĻĢ’āύ āφ⧰⧁ āĻŸā§‡āĻŦāϞ⧇āϟ
Android āφ⧰⧁ iPad/iPhoneā§° āĻŦāĻžāĻŦ⧇ Google Play Books āĻāĻĒāĻŸā§‹ āχāύāĻˇā§āϟāϞ āϕ⧰āĻ•āĨ¤ āχ āĻ¸ā§āĻŦāϝāĻŧāĻ‚āĻ•ā§āϰāĻŋāϝāĻŧāĻ­āĻžā§ąā§‡ āφāĻĒā§‹āύāĻžā§° āĻāĻ•āĻžāωāĻŖā§āϟ⧰ āϏ⧈āϤ⧇ āĻ›āĻŋāĻ‚āĻ• āĻšāϝāĻŧ āφ⧰⧁ āφāĻĒ⧁āύāĻŋ āϝ'āϤ⧇ āύāĻžāĻĨāĻžāĻ•āĻ• āϤ'āϤ⧇āχ āϕ⧋āύ⧋ āĻ…āĻĄāĻŋāĻ…'āĻŦ⧁āĻ• āĻ…āύāϞāĻžāχāύ āĻŦāĻž āĻ…āĻĢāϞāĻžāχāύāϤ āĻļ⧁āύāĻŋāĻŦāϞ⧈ āϏ⧁āĻŦāĻŋāϧāĻž āĻĻāĻŋāϝāĻŧ⧇āĨ¤
āϞ⧇āĻĒāϟāĻĒ āφ⧰⧁ āĻ•āĻŽā§āĻĒāĻŋāωāϟāĻžā§°
āφāĻĒ⧁āύāĻŋ āĻ•āĻŽā§āĻĒāĻŋāωāϟāĻžā§°ā§° ā§ąā§‡āĻŦ āĻŦā§āϰāĻžāωāϜāĻžā§° āĻŦā§āĻ¯ā§ąāĻšāĻžā§° āϕ⧰āĻŋ Google PlayāϤ āĻ•āĻŋāύāĻž āĻ…āĻĄāĻŋāĻ…'āĻŦ⧁āĻ•āϏāĻŽā§‚āĻš āĻļ⧁āύāĻŋāĻŦ āĻĒāĻžā§°ā§‡āĨ¤
āχ-ā§°ā§€āĻĄāĻžā§° āφ⧰⧁ āĻ…āĻ¨ā§āϝ āĻĄāĻŋāĻ­āĻžāχāϚ
Kobo eReadersā§° āĻĻ⧰⧇ āχ-āϚāĻŋ⧟āĻžāρāĻšā§€ā§° āĻĄāĻŋāĻ­āĻžāχāϚāϏāĻŽā§‚āĻšāϤ āĻĒā§āĻŋāĻŦāϞ⧈, āφāĻĒ⧁āύāĻŋ āĻāϟāĻž āĻĢāĻžāχāϞ āĻĄāĻžāωāύāĻ˛â€™āĻĄ āϕ⧰āĻŋ āϏ⧇āχāĻŸā§‹ āφāĻĒā§‹āύāĻžā§° āĻĄāĻŋāĻ­āĻžāχāϚāϞ⧈ āĻ¸ā§āĻĨāĻžāύāĻžāĻ¨ā§āϤ⧰āĻŖ āϕ⧰āĻŋāĻŦ āϞāĻžāĻ—āĻŋāĻŦāĨ¤ āϏāĻŽā§°ā§āĻĨāĻŋāϤ āχ-ā§°āĻŋāĻĄāĻžā§°āϞ⧈ āĻĢāĻžāχāϞāĻŸā§‹ āϕ⧇āύ⧇āĻ•ā§ˆ āĻ¸ā§āĻĨāĻžāύāĻžāĻ¨ā§āϤ⧰ āϕ⧰āĻŋāĻŦ āϜāĻžāύāĻŋāĻŦāϞ⧈ āϏāĻšāĻžāϝāĻŧ āϕ⧇āĻ¨ā§āĻĻā§ā§°āϤ āĻĨāĻ•āĻž āϏāĻŦāĻŋāĻļ⧇āώ āύāĻŋā§°ā§āĻĻ⧇āĻļāĻžā§ąāϞ⧀ āϚāĻžāĻ“āĻ•āĨ¤