Practical Mathematical Optimization: Basic Optimization Theory and Gradient-Based Algorithms, Edition 2

·
· Springer
電子書
372
評分和評論未經驗證  瞭解詳情

關於本電子書

This textbook presents a wide range of tools for a course in mathematical optimization for upper undergraduate and graduate students in mathematics, engineering, computer science, and other applied sciences. Basic optimization principles are presented with emphasis on gradient-based numerical optimization strategies and algorithms for solving both smooth and noisy discontinuous optimization problems. Attention is also paid to the difficulties of expense of function evaluations and the existence of multiple minima that often unnecessarily inhibit the use of gradient-based methods. This second edition addresses further advancements of gradient-only optimization strategies to handle discontinuities in objective functions. New chapters discuss the construction of surrogate models as well as new gradient-only solution strategies and numerical optimization using Python. A special Python module is electronically available (via springerlink) that makes the new algorithms featured in the text easily accessible and directly applicable. Numerical examples and exercises are included to encourage senior- to graduate-level students to plan, execute, and reflect on numerical investigations. By gaining a deep understanding of the conceptual material presented, students, scientists, and engineers will be able to develop systematic and scientific numerical investigative skills.

關於作者

Jan A. Snyman currently holds the position of emeritus professor in the Department of Mechanical and Aeronautical Engineering of the University of Pretoria, having retired as full professor in 2005. He has taught physics, mathematics and engineering mechanics to science and engineering students at undergraduate and postgraduate level, and has supervised the theses of 26 Masters and 8 PhD students. His research mainly concerns the development of gradient-based trajectory optimization algorithms for solving noisy and multi-modal problems, and their application in approximation methodologies for the optimal design of engineering systems. He has authored or co-authored 89 research articles in peer-reviewed journals as well as numerous papers in international conference proceedings.

Daniel N. Wilke is a senior lecturer in the Department of Mechanical and Aeronautical Engineering of the University of Pretoria. He teaches computer programming, mathematicalprogramming and computational mechanics to science and engineering students at undergraduate and postgraduate level. His current research focuses on the development of interactive design optimization technologies, and enabling statistical learning (artificial intelligence) application layers, for industrial processes and engineering design. He has co-authored over 50 peer-reviewed journal articles and full length conference papers.

為這本電子書評分

歡迎提供意見。

閱讀資訊

智慧型手機與平板電腦
只要安裝 Google Play 圖書應用程式 Android 版iPad/iPhone 版,不僅應用程式內容會自動與你的帳戶保持同步,還能讓你隨時隨地上網或離線閱讀。
筆記型電腦和電腦
你可以使用電腦的網路瀏覽器聆聽你在 Google Play 購買的有聲書。
電子書閱讀器與其他裝置
如要在 Kobo 電子閱讀器這類電子書裝置上閱覽書籍,必須將檔案下載並傳輸到該裝置上。請按照說明中心的詳細操作說明,將檔案傳輸到支援的電子閱讀器上。