Positional Games

· · ·
· Oberwolfach Seminars کتاب 44 · Springer
ای بک
146
صفحات
درجہ بندیوں اور جائزوں کی تصدیق نہیں کی جاتی ہے  مزید جانیں

اس ای بک کے بارے میں

This text is based on a lecture course given by the authors in the framework of Oberwolfach Seminars at the Mathematisches Forschungsinstitut Oberwolfach in May, 2013. It is intended to serve as a thorough introduction to the rapidly developing field of positional games. This area constitutes an important branch of combinatorics, whose aim it is to systematically develop an extensive mathematical basis for a variety of two player perfect information games. These ranges from such popular games as Tic-Tac-Toe and Hex to purely abstract games played on graphs and hypergraphs. The subject of positional games is strongly related to several other branches of combinatorics such as Ramsey theory, extremal graph and set theory, and the probabilistic method. These notes cover a variety of topics in positional games, including both classical results and recent important developments. They are presented in an accessible way and are accompanied by exercises of varying difficulty, helping the readerto better understand the theory. The text will benefit both researchers and graduate students in combinatorics and adjacent fields.

مصنف کے بارے میں

Dan Hefetz obtained his PhD in computer science at Tel Aviv University and is lecturer in pure mathematics at the University of Birmingham. Michael Krivelevich obtained his PhD in mathematics at Tel Aviv University, Israel, where he is now a full professor. Miloš Stojaković obtained his PhD in computer science at ETH Zürich, Switzerland, and is now an associate professor at the University of Novi Sad, Serbia. Tibor Szabó, who received his PhD from the Ohio State University, is a professor in the mathematics department at Freie Universität Berlin, Germany. One of their common research interests is positional games. In May 2013 they jointly organized a workshop on this topic at the Mathematisches Forschungsinstitut Oberwolfach (MFO).

اس ای بک کی درجہ بندی کریں

ہمیں اپنی رائے سے نوازیں۔

پڑھنے کی معلومات

اسمارٹ فونز اور ٹیب لیٹس
Android اور iPad/iPhone.کیلئے Google Play کتابیں ایپ انسٹال کریں۔ یہ خودکار طور پر آپ کے اکاؤنٹ سے سینک ہو جاتی ہے اور آپ جہاں کہیں بھی ہوں آپ کو آن لائن یا آف لائن پڑھنے دیتی ہے۔
لیپ ٹاپس اور کمپیوٹرز
آپ اپنے کمپیوٹر کے ویب براؤزر کا استعمال کر کے Google Play پر خریدی گئی آڈیو بکس سن سکتے ہیں۔
ای ریڈرز اور دیگر آلات
Kobo ای ریڈرز جیسے ای-انک آلات پر پڑھنے کے لیے، آپ کو ایک فائل ڈاؤن لوڈ کرنے اور اسے اپنے آلے پر منتقل کرنے کی ضرورت ہوگی۔ فائلز تعاون یافتہ ای ریڈرز کو منتقل کرنے کے لیے تفصیلی ہیلپ سینٹر کی ہدایات کی پیروی کریں۔