Plane and Solid Geometry

· Springer Science & Business Media
4,3
3 avis
E-book
349
Pages
Les notes et avis ne sont pas vérifiés. En savoir plus

À propos de cet e-book

Nature and the world around us that we ourselves design, furnish, and build contain many geometric patterns and structures. This is one of the reasons that geometry should be studied at school. At ?rst, the study of geometry is experimental. Results are taught and used in numerous examples. Only later do proofs come into play. But are these proofs truly necessary, or can we do without them? A natural answer is that every statement must be provided with a proof, because we want to know whether it is true. However, it is clear that the less experienced student may become frustrated by the pr- ence of too many proofs. Only later will the student understand that proofs not only show the correctness of a statement, but also provide better insight into the relationsamong various propertiesof the objects that arebeing st- ied. Learning statements without proofs, you risk not being able to see the forest for the trees. For this reason, we will pay much attention to a careful presentation of proofs in this book. In the development of the theory of plane geometry there are, however, many tricky questions, especially at the beg- ning. The presentation of proofs at that stage is in general more concealing than revealing. My ?rst objective in writing this book has been to give an accessible - position of the most common notions and properties of elementary Euclidean geometry in dimensions two and three.

Notes et avis

4,3
3 avis

Donner une note à cet e-book

Dites-nous ce que vous en pensez.

Informations sur la lecture

Smartphones et tablettes
Installez l'application Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play à l'aide du navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour lire sur des appareils e-Ink, comme les liseuses Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du Centre d'aide pour transférer les fichiers sur les liseuses compatibles.