Mathematical Foundation of Turbulent Viscous Flows: Lectures given at the C.I.M.E. Summer School held in Martina Franca, Italy, September 1-5, 2003

· · · ·
· Springer
Ebook
264
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

Constantin presents the Euler equations of ideal incompressible fluids and the blow-up problem for the Navier-Stokes equations of viscous fluids, describing major mathematical questions of turbulence theory. These are connected to the Caffarelli-Kohn-Nirenberg theory of singularities for the incompressible Navier-Stokes equations, explained in Gallavotti's lectures. Kazhikhov introduces the theory of strong approximation of weak limits via the method of averaging, applied to Navier-Stokes equations. Y. Meyer focuses on nonlinear evolution equations and related unexpected cancellation properties, either imposed on the initial condition, or satisfied by the solution itself, localized in space or in time variable. Ukai discusses the asymptotic analysis theory of fluid equations, the Cauchy-Kovalevskaya technique for the Boltzmann-Grad limit of the Newtonian equation, the multi-scale analysis, giving compressible and incompressible limits of the Boltzmann equation, and the analysis of their initial layers.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.